Efecto a Nivel Celular y Molecular de Agentes Antitumorales
PDF
HTML

Cómo citar

Ramírez Sánchez, S., & Rivera, G. (2014). Efecto a Nivel Celular y Molecular de Agentes Antitumorales. Acta Universitaria, 24(4), 15–20. https://doi.org/10.15174/au.2014.567

Resumen

Se conocen procesos implicados en el mantenimiento de la integridad y homeostasis celular y un daño irreversible sin retorno ocasiona la muerte celular, esta es considerada u mecanismo de defensa para la supervivencia celular como en el caso de el cáncer, por lo anterior es de importancia el desarrollo de medicamentos para quimioterapia apropiados para el tratamiento de algunos tipos de cáncer, algunos de estos compuestos como antibioticos y otros compuestos con propiedades anticancerigenas.
https://doi.org/10.15174/au.2014.567
PDF
HTML

Citas

Baytas, S. N., Inceler, N. & Yilmaz, K. J. A. (2013). Synthesis, cytotoxicity, and molecular properties prediction of novel 1,3-diarylpyrazole derivatives.Medicinal Chemistry Research, 22, 4893-4908.


Del Toro-Gonzalo (octubre, 2006). Muerte celular programada. Revisión del paradigma de apoptosis-necrosis y formas alternativas de muerte celular. Trabajo presentado en el VIII Congreso Virtual Hispanoamericano, Alcorcón, España.


Doxiciclina (2014). Recuperado el 25 de Junio del 2014 de http://es.wikipedia.org/ wiki/Doxiciclina


Dwyer, D. J., Camacho, D. M., Kohanski, M. A., Callura, J. M. & Collins, J. J. (2012). Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Molecular Cell, 46(5), 561-572.


García-Álvarez, L. & Oteo, J. A. (2010). Efectos no antimicrobianos de las tetraciclinas. Revista Española de Quimioterapia, 23(1), 4-11.


Griffin, M. O., Fricovsky, E., Ceballos, G. & Villarreal, F. (2010). Tetracyclines: a pleitropic family of compounds with promising therapeutic properties.American Journal of Physiology: Cell Physiology, 299(3), C539-548.


Gupta, R., Kazmi, I., Afzal, M., Khan, R., Chauhan, M., Al-Abbasi, F. A., Ahmad, A. & Anwar, F. (2013). Combination of sulfamethoxazole and selenium in anticancer therapy: a novel approach. Molecular and Cellular Biochemistry, 384(1-2), 279-285.


Hu, Y., Xia, Q., Shangguan, S., Liu, X., Hu, Y. & Sheng, R. (2012). Synthesis and biological evaluation of 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives as hypoxic selective anti-tumor agents. Molecules, 17(8), 9683-9696.


Kakodkar, N. C., Peddinti, R., Kletzel, M., Tian, Y., Guerrero, L. J., Undevia, S. D., Geary, D., Chlenski, A., Yang, Q., Salwen, H. R. & Cohn, S. L. (2011). The quinoxaline anti-tumor agent (R+)XK469 inhibits neuroblastoma tumor growth. Pediatric Blood Cancer, 56(1), 164-167.


Lee, S. B., Park, Y, I., Dong, M. S. & Gong, Y. D. (2010). Identification of 2,3,6-trisubstituted quinoxaline derivatives as a Wnt2/b-catenin pathway inhibitor in non-small lung cancer cell lines.Bioorganic and Medicinal Chemistry Letters, 20(19), 5900-5904.


Lee, S. B., Gong, Y. D., Park, Y. I. & Dong, M. S. (2013). 2,3,6-Trisubstituted quinoxaline derivative, a small molecule inhibitor of the Wnt/beta-catenin signaling pathway, suppresses cell proliferation and enhances radiosensitivity in A549/Wnt2 cells.Biochemical and Biophysical Research Communications, 431(4), 746-752.


Lizarbe-Iracheta, M. A. (2007). El suicidio y la muerte celular.Real Academia de Ciencias Exactas-España, 101(2), 1-33.


Mielcke, T. R., Mascarello, A., Filippi-Chiela, E., Zanin, R. F., Lenz, G., Leal P., Chiaradia, L. D., Yunes R. A., Nunes, R. J., Battastini, A. M., Morrone, F. B. & Campos, M. M. (2012). Activity of novel quinoxaline-derived chalcones on in vitro glioma cell proliferation. European Journal of Medicinal Chemistry, 48, 255-264.


Moarbess, G., El-Hajj, H., Kfoury, Y., El-Sabban, M. E., Lepelletier, Y., Hermine, O., Deleuze-Masquéfa, C., Bonnet, P. A. & Bazarbachi, A. (2008). EAPB0203, a member of the imidazoquinoxaline family, inhibits growth and induces caspasa-dependent apoptosis in T-cell lymphomas and HTLV-I-associated adult T-cell Leukemia/lymphoma.Blood, 111(7), 3770-3777.


Minociclina (2014). Recuperado el 25 de Junio del 2014 de http://es.wikipedia. org/wiki/Minociclina


Pezdirc, M., Zegura B. & Filipic, M. (2013). Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food and Chemical Toxicology, 59, 386-394.


Pingaew, R., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2013). Synthesis and structure-activity relationship of mono-indole-, bis-indole, and tris-indole-based sulfonamides as potential anticancer agents. Molecular Diversity, 17(3), 595-604.


Proskuryakov, S. Y., Konoplyannikov, A. G. & Gabai, V. L. (2003). Necrosis: a specific form of programmed cell death?Experimental Cell Research, 283(1), 1-16.


Rajule, R., Bryant, V. C., López, H., Luo, X. & Natarajan, A. (2012). Perturbing pro-survival proteins using quinoxaline derivatives: A structure activity relationship study. Bioorganic and Medicinal Chemistry, 20(7), 2227-2234.


Smith, D. M., Kazi, A., Smith, L., Long, T. E., Heldreth, B., Turos, E. & Dou, Q. P. (2002). A novel b-Lactam antibiotic activates tumor cell apoptotic program by inducing DNA damage. Molecular Pharmacology, 61(6), 1348-1358.


Wang, W., Ao, L., Rayburn, E. R., Xu, H., Zhang, X., Zhang, X., Nag, S. A., Wu, X., Wang, M. H., Wang, H., Van Meir, E. G. & Zhang, R. (2012). KCN1, a novel synthetic sulfonamide anticancer agent: in vitro and in vivo anti-pancreatic cancer activities and preclinical pharmacology. Public Library of Science One, 7(9), e44883.


Wu, P., Su, Y., Guan, X., Liu, X., Zhang, J., Dong, X., Huang, W. & Hu, Y. (2012). Identification of novel piperazinylquinoxaline derivatives as potent phosphoinositide 3-kinase (PI3K) inhibitors.Public Library of Science One, 7(8), e43171.


Zhivotovsky, B. & Orrenius, S. (2010). Cell death mechanisms: Cross-Talk and role in disease. Experimental Cell Research, 316(8), 1374-1383.