Enzimatic activity of xylanase immobilized in sodium alginate beads in citral hydrogenation using liquid medium
PDF (Español (España))
HTML (Español (España))


hydrogen peroxide


Citral is an aldehyde a,ß-unsaturated, susceptible to hydrogenation reactions, with the formation of geraniol, nerol and citronellol, compounds with special interest in the fine chemical. Industrially, citral is hydrogenated using noble metal catalysts supported on TiO2. The interest in using biocatalysts to carry out this reaction, for its efficiency and selectivity, has increased recently. Biocatalysts immobilization in alginate enhances their chemical and thermal stability against chemical and thermal denaturing. Hydrogenation of citral was carried out in liquid medium using immobilized xylanase (650 mIU/mL). Under controlled conditions of temperature and stirring speed. The reduction of citral obtained was higher than 99.9% at a pH of 5.88; achieving as products: nerol, geraniol and citronellal. The concentration of H2O2 had no significant influence on the enzyme activity, on the contrary the pH, inversely influenced. Maximum speed of immobilized xylanase reaction, was obtained at pH 5.88, the stability of the alginate matrix is significantly reduced by increasing the pH.

PDF (Español (España))
HTML (Español (España))


Anderson, R., Griffin, K., Johnston, P., & Alsters, P. L. (2003). Selective Oxidation of Alcohols to Carbonyl Compounds and Carboxylic Acids with Platinum Group Metal Catalysts. Advanced Synthesis and Catalysis, 345(4), 517-523.

Arias, G. P., Stashenko, E., & Torre, R. (2007). Biotransformación de terpenos r(+)-limoneno, a-pineno y ?-terpineno por medio de cloroperoxidasa de caldariomyces fumago. Scientia et Technica, XIII(33), 75-78.

Bailey, M. J., Bieley, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity.Journal of Biotechnology, 23(3), 257-270.

Bailón-García, E., Carrasco-Marín, F., Pérez-Cadenas, A. F., & Maldonado-Hódar, F. J. (2014). Microspheres of carbon xerogel: An alternative Pt-support for theselective hydrogenation of citral. Applied Catalalysis A: General, 482, 318-326. doi: 10.1016/j.apcata.2014.06.011

Daly, H., Manyar, H. G., Morgan, R., Thompson, J. M., Delgado, J. J., Burch, R., & Hardacre, C. (2014). Use of Short Time-on-Stream Attenuated Total Internal Reflection Infrared Spectroscopy To Probe Changes in Adsorption Geometry for Determination of Selectivity in the Hydrogenation of Citral. American Chemical Society Catalysis, 4(8), 2470-2478.

Demyttenaere, J. C. R., Herrera, M. C., & De Kimpe, N. (2000). Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp. Phytochemistry, 55(4), 363-373.

Díaz, G., Gómez-Cortés, A., Hernández-Cristobal, O., Murcia, J. J., Borda, G., & Rojas, H. (2011). Hydrogenation of Citral Over IrAu/TiO2 Catalysts. Effect of the Preparation Method. Topic. in Catalysis, 54(8), 467-473.

Esmaeili, A., Rohany, S., & Safaiyan, S. (2012). Biotransformation of citral by free and immobilized S. Cerevisiae. Chemistry of Natural Componds, 48(2), 88-290.

Gamero, A., Manzanares, P., Querol, A., & Belloch, C. (2011). Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids. International Journal of Food Microbiology, 145(1), 92-97.

Hall, M., Hauer, B., Stuermer, R., Kroutila, W., & Fabera, K. (2006). Asymmetric whole-cell bioreduction of an α, β- unsaturated aldehyde (citral): competing prim-alcohol dehydrogenase and C – C lyase activities. Tetrahedron: Asymmetry, 17(21), 3058-3062.

Hung, Y. J., Peng, C. C., Tzen, J. T. C., Chen, M. J., & Liu, J. R. (2008). Immobilization of Neocallimastix patriciarum xylanase on artificial oil bodies and statistical ptimization of enzyme activity. Bioresource Technology, 99(18), 8662-8866.

Kikonyogo, A., Abriola, D. P., Dryjanski, M., & Pietruszko, R. (1999). Mechanism of inhibition of aldehyde dehydrogenase by citral, a retinoid antagonist. European Journal of Biochemistry, 262(3), 704-712.

Knob, A., Terrasan, C. R. F., & Carmona, E. C. (2010), β-Xylosidases fron filamentous fungi: an overview. World Journal Microbiology and Biotecnology, 26(3), 389-407.

Ladero, M., Santos, A., & García-Ochoa, F. (2000). Kinetic modeling of lactose hydrolysis with an inmobilizes B galactosidase from Kluyveromyces fagilis. Enzyme Microbial Technololy, 27(8), 583-592.

Lawrence, B. M. (2003). Progress in Essential Oils 1976-2000. Carol Stream, IL: Allured Publishing Corporation.

Lineweaver, H., & Burke, D. (1934). Determination of enzyme dissociation constants. Journal of the American Chemical Society, 56(3), 658-666.

Liu, R., Wang, Y., Cheng, H., Yu, Y., Zhao, F., & Arai, M. (2013). Reduction of citral in water under typical transfer hydrogenation conditions-Reaction mechanisms with evolution of and hydrogenation by molecular hydrogen. Journal of Molecular Catalysis A: Chemical, 366(1), 315-320.

Müller, A., Hauer, B., & Rosche, B. (2006). Enzymatic reduction of the α,β-unsaturated carbon bond in citral. Journal of Molecular Catalysis B: Enzymatic, 38(3-6), 126-130.

Nagar, S., Gupta, V. K., Kumar, D., Kumar, L., & Kuhad, R. C. (2010). Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. Journal of Industrial Microbiol and Biotechnology, 37(1), 71-83.

Ospina de Nigrinis, L. S., Adames, M., & Mendoza, E. (1983). Estudio del aceite esencial de Eucalyptus citriodora Bailey. Revista Colombianan de Ciencias Químico-Farmacéuticas, 4(12), 95-113.

Pal, A., & Khanum, F. (2011). Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: Characterization of immobilized enzyme. Process Biochemistry, 46(6), 1311-1322.

Polizeli, M. L., Rizzatti, A. C., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67(5), 577–591.

Rodríguez, A., De Los Reyes, J., Viveros, T., & Montoya, A. (2013). Efecto del soporte en la hidrogenación selectiva de citral sobre catalizadores de platino soportados en sílice-circonia y sílice-titania. Avances en Ciencias e Ingeniería, 3(1), 55-69.

Rojas, H., Martínez, J. J., Mancípe, S., Borda, G., & Reyes, P. (2012). Citral hydrogenation over novel niobia and titania supported Au, Ir–Au and Ir catalysts. Reaction Kinetics, Mechanims and Catalysis, 106(2), 445-455.

Rojas, J. P., Perea, J. A., & Ortiz, C. C. (2009). Evaluation of the biotransformation of geraniol and (r)- (+)-pinene using cell of rhodococcus opacus dsm 44313. Facultad de Ciencias Agropecuarias, 7(2), 104-112.

Rojas, S. B., Borda, G., & Valencia, R. (2005). Hidrogenación selectiva de citral en fase líquida sobre catalizadores Ir–Fe/TiO2 reducidos a altas temperaturas. Revista Colombiana de Química, 34(2), 127-138.

Sant, B. R. (1956). Thiocyabate interference in the permanganimetry of hydrogen peroxide.Analytica Chimica Acta, 15, 413-414. doi: 10.1016/0003-2670(56)80077-9

Santiago-Pedro, S., Tamayo-Galván, V., & Viveros-García, T. (2013). Effect of the acid–base properties of the support on the performance of Pt catalysts in the partial hydrogenation of citral. Catalysis Today, 213, 101-108. doi: 10.1016/j.cattod.2013.04.032

Somolinos, M. G. (2009). Inactivation of Escherichia coli by citral. Journal of Applied Microbiology, 108(6), 1928-1939.

Stolle, A., Gallert, T., Schmöger, C., & Ondruschk, B. (2013). Hydrogenation of citral: a wide-spread model reaction for selective reduction of α,β-unsaturated aldehydes. RSC Advances, 3, 2112–2153. doi: 10.1039/C2RA21498A

Yin, B., Yang, X., Wei, G., Ma, Y., & Wei, D. (2008). Expression of Two Old Yellow Enzyme Homologues from Gluconobacter oxydans and Identification of their Citral Hydrogenation Abilities. Molecular Biotechnology, 38(3), 241-245.

Zhao, J., Xu, X., Li, X., & Wang, J. (2014). Promotion of Sn on the Pd/AC catalyst for the selective hydrogenation of cinnamaldehyde. Catalysis Communications, 43, 102-106. doi: 10.1016/j.catcom.2013.09.019