
Vol. 19 no. 1 Enero-Abril 2009 51

U n i v e r s i d a d d e G u a n a j u a t o

An OOP Approach to Simplify MDI Application
Development
Sergio Ledesma*, Gustavo Cerda-Villafana*, Donato Hernández Fusilier* y
Miguel Torres Cisneros*.

INTRODUCTION

In general, a window is divided in two sections, the client area and the non-
client area as shown in Figure 1. The non-client area includes the title bar
and the surrounding borders of the window. On the other hand, the client
window covers completely the interior area delimited by the title bar and the
window borders. A typical Windows application is responsible of drawing
the client area, while the operating system is responsible of drawing and
managing the non-client area.

Windows applications are made out of child windows. Each window is
able to communicate with each other using the Windows messages. Con-

Palabras clave:
Cliente; Múltiples Documentos; MDI; OOP;
UML.

Keywords:
Client; Multiple Documents; MDI; OOP; UML.

ABSTRACT

The Multiple Document Interface (MDI) is a Microsoft Windows specifi cation that allows ma-
naging multiple documents using a single graphic interface application. An MDI application
allows opening several documents simultaneously. Only one document is active at a parti-
cular time. MDI applications can be deployed using Win32 or Microsoft Foundation Classes
(MFC). Programs developed using Win32 are faster than those using MFC. However, Win32
applications are diffi cult to implement and prone to errors. It should be mentioned that,
learning how to properly use MFC to deploy MDI applications is not simple, and performan-
ce is typically worse than that of Win32 applications. A method to simplify the development
of MDI applications using Object-Oriented Programming (OOP) is proposed. Subsequently,
it is shown that this method generates compact code that is easier to read and maintain
than other methods (i.e., MFC). Finally, it is demonstrated that the proposed method allows
the rapid development of MDI applications without sacrifi cing application performance.

RESUMEN

La Interfase para Múltiples Documentos (MDI) es una especifi cación del sistema operativo
Microsoft Windows que permite manipular varios documentos usando un sólo programa.
Un programa del tipo MDI permite abrir varios documentos simultáneamente. En un ins-
tante dado, sólo un documento es activo. Los programas del tipo MDI pueden desarrollarse
usando Win32 o las clases fundamentales de Microsoft (MFC.) Los programas desarrolla-
dos usando Win32 son más rápidos que los programas que usan MFC. Sin embargo, éstos
son difíciles de implementar promoviendo la existencia de errores. Cabe mencionar que el
desarrollo de programas del tipo MDI usando MFC no es sencillo, y que su desempeño es
típicamente peor que el de un programa del tipo Win32. Se propone un método que drásti-
camente simplifi ca el desarrollo de programas del tipo MDI por medio de la Programación
Orientada a Objetos (POO.) Se demuestra que el método propuesto produce código que es
más fácil de leer y mantener que el resultante por otros métodos (por ejemplo MFC). Adicio-
nalmente, se demuestra que el método propuesto permite el rápido desarrollo de programas
del tipo MDI sin afectar la velocidad del programa.

* División de Ingenierías del Campus Irapuato-Salamanca de la Universidad de Guanajuato. Correos electrónicos: selo@salamanca.ugto.mx, gcerdav@salamanca.ugto.mx, donato@salaman-
ca.ugto.mx, mtorres@salamanca.ugto.mx.

Recibido: 29 de Agosto de 2007
Aceptado: 29 de Octubre de 2008

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 19 no. 1 Enero-Abril 2009 52

sequently, each window has a message queue to store
its messages while it is busy and a function to process
these messages. Plainly, a queue is a line that con-
tains elements that are waiting for a service; i.e., when
a customer goes to the bank, he enters a queue (line)
and waits to be attended. On a Windows application,
once a message is processed, it is removed from the
queue and a new message may be processed. When
the message queue is empty, the window object tem-
porarily sleeps if no further processing is required.
The function that processes the Windows messages
is commonly known as the window procedure, and it
explicitly determines the window behavior.

A Microsoft Windows class is a generic blueprint
of a window object, and a Windows class needs to be
registered before creating a window of that class. Spe-
cifi cally, the class registration process requires several
parameters that establish window operation; the most
important of these parameters is the window procedure.
Typically, the window procedure must respond to the
messages of interest for that window, and leave Win-
dows to process the remaining messages through the
use of the Application Program Interface (API) ::DefWin-
dowProc. Note the use of the two colons before the func-
tion name to indicate that the function has been de-
clared inside the global namespace. An application may
register one or more Windows classes, or use a pre-reg-
istered Windows class. In general, Multiple Document
Interface (MDI) applications have some similarities with
typical Single document interface applications (SDI);
however, there are some differences that will be ad-
dressed next, see the Microsoft Software Development
Network (MSDN, 2005).

The main window of an MDI application, also
known as the frame window, has a title bar, a menu,
a sizing border, a toolbar, and three buttons to close,

minimize and maximize the application as shown
in Figure 2. The area inside the main window, also
known as workspace, is the area where the document
windows offi cially live. These documents windows are
best known as MDI children, and can be moved inside
the application workspace by the user. An MDI ap-
plication clips its MDI child windows to its workspace
preventing users from moving MDI child windows
outside the frame window. MDI child windows do not
have a toolbar or a menu; for this reason they only

have a title bar as it can be seen from Figure 2.

The operating system, Microsoft Windows, allows
several applications to share the mouse and the key-
board using the active-application concept. Thus,
there is only one active application and this applica-
tion receives mouse and keyboard input. Similarly,
MDI extends this concept to document windows; as
a result, only one MDI child window can be active in-
side an MDI application. The active child window has
a highlighted title bar that allows the user to easily
identify this window. Naturally, the active MDI child
can be manipulated using the application menu and
the application toolbar.

The menu and toolbar of an MDI application must
be synchronized depending on the state of the active
child and the application itself. When an MDI applica-
tion has no children, its menu and toolbar may of-
fer only a subset of viable options; usually the only
available options are those of document creation (new
empty document or new from the clipboard.) MDI ap-
plications may support different kinds of documents:
i.e., a graph application may be able to create and ma-
nipulate pie charts as well as bar charts. For this
type of applications, every time a document window
becomes active an appropriate menu and toolbar

Figure 1. A Windows application showing the non-client area and the client area.

Figure 2. A typical MDI application showing two MDI child windows in cascade mode.

Vol. 19 no. 1 Enero-Abril 2009 53

U n i v e r s i d a d d e G u a n a j u a t o

is displayed at the top of the main window. Several
commercial software products use MDI, i.e. Microsoft
Excel and Corel Draw. Moreover, several researchers
have been used MDI for simulation purposes, (see Bir
et al., 1992, Timmer et al., 2000 and Kremer, 1993).

An MDI application has a special menu called the
“Window” menu, which is located right before the
“Help” menu as shown in Figure 2. The “Window”
menu provides layout and activation options to op-
erate the MDI children, and maintains a list of open
documents for quick access and handling. Generally,
this menu contains the items: Cascade, Tile Horizon-
tally, Tile Vertically, and Close All; these options can
also be accessed from the toolbar as shown in Figure
2 (see the icons that are right after the print and prop-
erties icons). In particular, the layout and activation
options operate through a special window called the
client window, which will be introduced next.

Inside the frame window there is a child window,
called the client window that is responsible of control-
ling the position and size of the document windows.
The client window appears invisible to most users
because it fi lls the interior of the frame window and
has a dark gray color. The pre-registered class MDI-
CLIENT is used to create the client window, and its
window procedure encapsulates most of the MDI re-
quired functionality. Because the client window is cre-
ated using a pre-registered class, it is not necessary
to provide a window procedure for this window. Even
though the frame window receives the command mes-
sages through its menu, the client window and the
active MDI child are responsible for processing most of
these messages. Finally, it is important not to confuse
the client window with the client area of a window; the
client window applies only to MDI applications, while
the client area is not a window but a specifi c area of it
(see Newcomer, 1997 and Petzold, 1999).

In order to successfully create the main window,
a typical Windows application starts by registering a
Windows class. On the other hand, an MDI application
typically starts by registering two Windows classes, one
for the frame window and another one for the MDI chil-
dren. Technically, this implies that a normal Windows
application (non MDI) requires at least one window pro-
cedure, while an MDI application requires at least two.

As it was mentioned before, the frame window has
a child, classically known as the client window. Thus,
as soon as the frame window is processing the mes-
sage WM_CREATE, it must proceed to create the cli-
ent window by fi lling up a CLIENTCREATESTRUCT
structure and call ::CreateWindow using the pre-reg-

istered class MDICLIENT. Right after these two win-
dows have been successfully created, the MDI appli-
cation is ready for user operation. Typically, the user
will open an existing document or create a new one;
in both cases the frame window will receive the mes-
sage WM_COMMAND. Thus, the frame window must
respond to this message by creating a new MDI child
object. As it will be shown later, the proposed method
reduces the application development time by hiding
most of the MDI implementation details.

Win32 Applications

Microsoft Corporation strategically develops their prod-
ucts using the Executive, which is a collection of APIs
rarely known for most programmers. Because Micro-
soft does not publicly document the Executive, pro-
grammers must alternatively use an Executive subset
called Win32 (see Williams, 2000). Because the Win32
APIs were deployed when computer memory and speed
were limited, they are extremely effi cient in nowadays
computers. Unfortunately, the set of Win32 APIs was
planned when most of the programming was done us-
ing plain C, and most of the application developers,
back then, did not want to move to C++. Thus, Win32
has several shortcomings when OOP is required, and
two of these are worth mentioning. First, window data
storing is diffi cult to implement and requires either
the use global variables or a custom data structure.
Second, the window procedure, that is responsible of
message processing, needs to be a global function or a
static member function of a class; this means that the
window procedure does not have any context informa-
tion (at least not directly). Consequently, code written
using Win32 contains a considerable number of global
variables, and is diffi cult to read and maintain, not to
be mentioned, prone to errors (Beveridge et al., 1996).

Microsoft Foundation Classes

Microsoft Corporation created a set of classes, better
known as MFC, to simplify application development
and tolerably provide OOP. To replace the window pro-
cedure, they introduced the concept of the message
map, which is responsible for calling the appropriate
function in response of a specifi c Windows message.
Unfortunately, the message map unquestionably in-
creases the message processing time, makes the ob-
ject description confusing, and programmers even-
tually need to learn how to use it. Additionally, an
application deployed using MFC has a direct overhead
that does not exist in a Win32 application. On the
bright side, Microsoft Visual Studio generously pro-
vides more than a few wizards to drastically simplify
application development. There is a specifi c wizard to

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 19 no. 1 Enero-Abril 2009 54

deploy MDI applications using MFC. This wizard al-
lows the creation of complex projects to directly start
working with. Once the wizard is completed, the pro-
grammer must regularly add and remove code; this
can be simple if the programmer knows how to do it.
However, adding or removing code with no previous
MFC knowledge may break the application easily.

PROPOSED METHOD

As it was mentioned previously, there are two major
shortcomings of using Win32. We will describe, now,
how they can be eliminated.

To simplify MDI application development, we pro-
pose the creation of a C++ class to represent a rectan-
gular object that has a size, a position, and a window
procedure. This window procedure may be deployed as
a member function of a class, however, the APIs ::Reg-
isterClass or ::RegisterClassEx accept only static func-
tions for message processing. Consequently, a static
window procedure will not be able to access any mem-
ber variables or call any member functions that are not
static. This issue can be solved using the API ::SetWin-
dowLongPtr in combination with ::GetWindowLongPtr
to store and retrieve context information (Yuan, 2000).

To simplify application development, it was sug-
gested (see Petzold, 1999), to use a custom data struc-
ture to store window data, however, this traditional
approach requires a lot of housekeeping and the re-
sulting code is diffi cult to read and maintain. Alter-
natively, we propose to store the this pointer of a C++
class using the fl ag GWLP_USERDATA during the
calls of ::SetWindowLongPtr and ::GetWindowLongPtr
instead of storing a custom data structure. We will
show that this approach results in clear and clean
code and has the advantage that can be implemented
on a base class making its use completely transparent
to the programmer. This approach is motivated by the
method proposed by Yuan, 2000.

To simplify the notation, assume that a data
structure MsgInfo, as shown in the UML diagram of
Figure 3, has been defi ned. This structure basically
stores Windows message information, namely, a win-
dow handle and two context-parameters wParam and
lParam of type WPARAM and LPARAM, respectively.
After providing appropriate background information
on MDI technology, we proceed to describe in detail
the proposed method.

The UML diagram in Figure 4 describes the proposed
classes: Window, MdiChild and MdiFrame. Observe
that an appropriate namespace, called Win, has been

defi ned to enable us to re-use the keywords already de-
fi ned inside the global space and avoid name clashes.
In this diagram, any computer screen object is repre-
sented by the base class Window; this class is abstract
due to the virtual member function Window::GetClass-
Name and the protected constructor of the class; thus,
a Window object can be created only by class derivation
(note that abstract classes and abstract methods are
denoted in an UML diagram using italics).

As it was previously established, Microsoft Windows
requires registering a Windows class before creating an
object of that class. Therefore, the member function
Window::GetClassName must be called once during
class registration, and then repeatedly for each object
that is created. The implementation of the member
function Window::GetClassName is simple; it only re-
turns the class name that is used for class registration.
Specifi cally, a Windows class name is a text string that
helps the operating system to identify this class. This
can be verifi ed using Spy++, the standard tool provided
by Microsoft Visual Studio that uses the Windows class
name to fi nd and spy windows for debugging purposes.
The member function Window::GetClassName is called
by the member functions MdiFrame::RegisterClass and
MdiChild::RegisterClass to register one MDI frame class
and one MDI child class, respectively.

The implementation of the Win::Window class is
straightforward; the public static variable Window::
hInstance becomes handy to store the application in-
stance and is used for window creation and resource
loading (note that static variables and functions are
represented as underlined text following the UML nota-
tion). The member functions Create, Destroy, Update,
Show are just simple wrappers for the standard APIs
::CreateWindow, ::DestroyWindow, ::UpdateWindow
and ::ShowWindow, respectively. It is important to
note that ::CreateWindowEx can be used instead of the
most traditional API ::CreateWindow; the only differ-
ence between these two is that ::CreateWindowEx sup-
ports additional window styles called extended window
styles (note that Microsoft has followed the consistent

Figure 3. UML diagram of the MsgInfo structure.

Vol. 19 no. 1 Enero-Abril 2009 55

U n i v e r s i d a d d e G u a n a j u a t o

notation of adding the letters Ex to
the new versions of the traditional
Windows APIs.)

One of the most interesting as-
pects of the Win::Window class is
the implementation of the public
operator HWND, which convenient-
ly allows using a Win::Window ob-
ject whenever a window handle is
required. This can become pretty
handy because several Windows
APIs require a window handle. The
implementation of this operator is
just a return statement that pro-
vides the proper window handle that
was stored during window creation,
thus, there is no need to write wrap-
pers for quite a lot of Windows APIs.

The Win::MdiFrame Class

We propose the Win::MdiFrame class
to ease the development of MDI ap-
plications. This class is depicted in
Figure 4 and can be used to create
the application window. Observe
that the Win::MdiFrame class is ab-
stract because it is directly derived
from Win::Window and does not im-
plement GetClassName. Addition-
ally, Win::MdiFrame contains two
abstract methods, MdiFrame::On-
Command and MdiFrame::GetFirst-
ChildID; these can be implemented
easily and they will be explicitly de-
scribed on the RESULTS section.
This class includes several helper
functions that conveniently provide
most of the functionality of a typi-
cal MDI application, for example,
MdiFrame::SendMessageToActive
allows sending a message to the ac-
tive MDI child by calling internally
MdiFrame::GetActiveWindow and
then sending the respective mes-
sage using the popular API ::Send-
Message. Another handy function
is MdiFrame::GetActiveWindow that
allows getting the handle of the ac-
tive child by sending a WM_MDI-
GETACTIVE to the client, and then
validating the returned handle win-
dow. Despite the fact that most of
the member functions of the Win::
MdiFrame are pretty simple, they

properly grant nearly all of the support required by an MDI application.
The operation of the Win::MdiFrame class is described next.

The MdiFrame::CreateFrame function basically creates a local CRE-
ATESTRUCTURE variable and set the lpCreateParams value of this
structure to the value of the this pointer of the current object, and in-
ternally calls ::CreateWindow (the function Window::Create can also be
called). Remember that the standard API ::CreateWindow accepts a user
defi ne value than can be passed to the window procedure by using the
parameter lpCreateParams. For this specifi c case, the this pointer must
be sent as a user default value so that the new window object is able to
store it through the use of the API ::SetWindowLongPtr. The step-by-step
code to store and retrieve the this pointer of C++ class inside the window
object will be discussed in detail now.

The function MdiFrame::RegisterClass registers the static member
function MdiFrame::GWndProc for message processing. The letter G at
the beginning of the function name denotes, in this case, “Generic”. That
is, Win::MdiFrame has a common window procedure that will be called for
all the MdiFrame objects. The implementation of this function is shown in
Figure 5. This function starts by checking if the message WM_NCCREATE
has been receive; this message is received when the non-client area of the
window is being created. This is supposed to be one of the fi rst messages
the window procedure receives. The documentation of WM_NCCREATE
message specifi cally indicates that it is possible to transfer user defi ned
information by using the parameter lpCreateParams of the CREATES-

Figure 4. UML diagram showing the classes: Window, MdiFrame and MdiChild.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 19 no. 1 Enero-Abril 2009 56

TRUCT variable that is passed during the initial call to
::CreateWindow or ::CreateWindowEx. Once the mes-
sage WM_NCCREATE is being processed, the generic
window procedure validates the parameter lParam
to fi nd out if it corresponds to the size of a variable
of type CREATESTRUCT. If it is valid, the lParam is
transformed by casting it to a CREATESTRUCT long
pointer; peculiarly its lpCreateParams is another CRE-
ATESTRUCT structure. The lpCreateParams value of
this last CREATESTRUCT variable is the user defi ned
value, in this case, the this pointer of a C++ class.
Once the pointer has been validated, the function pro-
ceeds to store it using the API ::SetWindowLongPtr
using the fl ag GWLP_USERDATA as shown. Future
calls of the generic window procedure will result in
a call to ::GetWindowLongPtr to retrieve the original
this pointer, and be able to call the specifi c window
procedure. The proposed implementation completely
hides the static nature of the generic window proce-
dure, and programmers mind only on implementing
the non-static function MdiFrame::WndProc. For this
to work properly, it is very important not to forget set-
ting the parameter lpCreateParams to the value of
this pointer during the previous call to ::CreateWin-
dow. In practice, this does not represent a problem be-
cause the function MdiFrame::CreateFrame does this
automatically. Finally, it is imperative to mention that
whenever an error occur during the execution of the
generic window procedure, MdiFrame::GWndProc, the
right thing to do is call ::DefWindowProc for default
processing instead of just doing nothing.

The code shown in Figure 5 can be used on a debug
version of the application; for a release version it is not
mandatory to check the validity of the pointers received
inside the CREATESTRUCT structure, and all the calls
to ::IsBadReadPtr can be safely removed from the code,
resulting in a very compact code.

Finally, we will address some of the actions that
must occur during the execution of the virtual function
MdiFrame::OnCreate, which is called during the pro-
cessing of the message WM_CREATE. This function is
declared as protected and is responsible of creating the
client window using the pre-registered class MDICLI-
ENT when calling the API ::CreateWindow. Once the cli-
ent window has been successfully created, the function
stores the client window handle in the variable Mdi-
Frame::hWndClient. Because MdiFrame::OnCreate is
declared as a virtual function, it is possible to overwrite
this function to alternatively perform other initializa-
tion actions and then call the base class function; this
can be useful for toolbar or rebar creation (a rebar is a
Windows control that typically allows several toolbars,
or other controls, to be positioned by the user).

The Win::MdiChild Class

Figure 4 shows the UML diagram for the Win::MdiCh-
ild class. As it can be seen from this fi gure, this class
is much simpler than the Win::MdiFrame class. There
are, however, some special considerations that need
to be taken due to the fact that objects of this class
can be created dynamically; that is, a user can cre-
ate as many MDI child windows as he wants at run
time. To adequately provide dynamic object creation,
we propose the function MdiChild::CreateChild as
shown in Figure 4. MdiChild::CreateChild fi lls up a
MDICREATESTRUCT to be able to send the message
WM_MDICREATE to the client. The important thing to
remember is to store the this pointer of the class us-
ing the lParam variable of the MDICREATESTRUCT so
that we can successfully retrieve it and store it during
the processing of the message WM_NCCREATE. Fig-
ure 6 shows the full code for the function MdiChild::
GWndProc. This function is pretty similar to the func-
tion MdiFrame:GWndProc, however there are some evi-
dent differences. First, the lpCreateParams value is not
a CREATESTRUCT but a MDICREASTRUCT. Second,
instead of calling ::DefWindowProc for default process-
ing, we must call ::DefMDIChildProc. Third, object de-
struction occurs dynamically during the processing of
the message WM_DESTROY. It is important to mention
that the main frame object must create a new MdiChild
object using the operator new, and then call the func-
tion MdiChild::CreateChild. Finally, it can be seen from
Figure 4 that the message WM_MDIACTIVATE plays
an important role in MDI application development, and
this message will be explained in detail next.

Figure 5. Implementation of the generic window procedure for the Win::MdiFrame class.

Vol. 19 no. 1 Enero-Abril 2009 57

U n i v e r s i d a d d e G u a n a j u a t o

A user may have several documents open simul-
taneously, and each time a user clicks on an inac-
tive window, the frame window sends a WM_MDIAC-
TIVATE message to the client, which in turn, sends
a MW_MDIACTIVATE message to both the window
becoming active and the window becoming inactive.
The active window receives this message as a request
to become inactive, while the inactive window receives
it as a notifi cation that it is becoming active. An MDI
child window may prevent itself of losing activation by
processing the WM_NCACTIVE message as indicated
in the Software Development Kit better known as the
SDK (see MSDA, 2005). Because users typically switch
among different open documents, the WM_MDIACTI-
VATE message is strongly related with menu and tool-
bar activation, as it will be explained.

Usually, an MDI application has at least two menus,
one that is displayed before any document window has
been created or opened, and another one that is dis-
played after the creation of the fi rst MDI child. Both
menus should be created right after the frame and
child classes have been registered. One menu must be
set as soon as the frame window is created, while the
other one should be set once the client has at least
one child. Because one of the menus is attached to the
frame window when it is destroyed, it is not necessary

to destroy the initial menu; however, the other menu
needs to be destroyed explicitly.

Users expect the toolbar and the menu to display
as enabled only those options that apply to the current
state of the application. That is why the WM_MDIAC-
TIVATE message is so important. Each time a window
document receives the WM_MDIACTIVATE message the
lParam parameter has the handle of the window that is
becoming active. This is the perfect moment for menu
and toolbar synchronization. For applications that han-
dle more than one type of documents, this is the op-
portunity to switch to a different menu and/or toolbar.
To set the menu, a MM_MDISETMENU must be sent to
the client (note that the API ::SetMenu cannot be use for
MDI applications as clearly indicated in the SDK.)

To manage menu synchronization, we expressly
suggest the classes described in the UML diagram of
Figure 7. At the top of the diagram, the base Win::
Menu class is described. A Win::Menu object is a ge-
neric Windows menu that has an ID and some menu
items that can appropriately be selected, enabled or

Figure 6. Implementation of the static generic window procedure for the MdiChild class.

Figure 7. UML diagram showing the MdiMenu class.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 19 no. 1 Enero-Abril 2009 58

checked. The Win::MdiMedu class, at the bottom of
Figure 7, represents a menu for MDI applications. To
create a Win::MdiMenu a Win::MdiFrame object is re-
quired as it can be seen from the constructor proto-
type. The second parameter of the constructor is an
integer offset value to specify the position of the “Win-
dow” menu described previously, see Figure 2. The key
function of this class is the MdiMenu::Set function,
which sets (or activates) a menu. A typical MDI ap-
plication creates two Win::MdiMenu objects (one when
no MDI child exists and another when there is at least
one MDI child). As it can be seen from Figure 6, menu
activation is managed directly by the Win::MdiChild::
GWndProc when the message WM_MDIACTIVATE is
processed. As it can be seen from this fi gure, once the
WM_MDIACTIVATE message is being processed, the
function compares the current window handle with
the value of the paramenter lParam, if they are equal
the child menu is set using its MdiChild::Set function,
otherwise the default menu is set.

RESULTS

Once the Win::MdiFrame and Win::MdiChild classes
have been clearly defi ned, developing an MDI applica-
tion is straightforward. To illustrate this, consider Fig-
ure 8 and 9 that show the deployment of Multigraph,
a graph editing applications using MDI technology. As
it can be seen from Figure 8, the Multigraph class is
derived directly from the abstract class Win::MdiFrame.
The application must be able to create an object of type
Multigraph, thus this class must be non-abstract and
must implement GetClassName, OnCommand and Get-
FirstChildID. Implementing these functions is easy,
GetClassName simply returns the text string “Multi-
graph”, GetFirstChildID returns the ID of the fi rst MDI
child (i.e., 50 000), and OnCommand must respond to

Figure 9. UML diagram showing the Graph class.

the application commands (a typical implementation
might be a switch statement with case statements for
each menu ID.)

Figure 9 shows the UML diagram for the Graph
class. As it can be seen from this fi gure, the Graph
class derives directly from the class Win::MdiChild
which derives from Win::Window, therefore Graph
must implement GetClassName and MdiChild::Wnd-
Proc. Specifi cally, GetClassName returns the text
string “Graph” and the function MdiChild::WndProc is
called by the operating system for message process-
ing. The Graph object must be able to store and draw
a 2D graph on the surface of a window. The private
variable Graph::points of type POINT[] is used for data
storing while the function Graph::OnPaint is responsi-
ble for data drawing. The private function Graph::On-
Command is not called directly by the user; the client
window redirects all WM_COMMAND messages to the
active child. Graph::OnQueyEndSession and Graph::
OnClose are not required, and can be implemented
only on those applications that need to notify the user
before closing the MDI child. The most important
functions in the Graph class are Graph::OnMdiActi-
vate and Graph::SyncMenuAndToolbar, their particu-
lar purpose is to synchronize the application menu
and toolbar whenever the child becomes active. The
implementation of Graph::OnMdiActivate is simple, it
only calls the function Graph::SyncMenuAndToolbar,
which, in turn, enables or disables the appropriate
menu items by calling Win::Menu::SetItemEnable.

Figure 8. UML diagram showing the Multigraph MDI application.

Vol. 19 no. 1 Enero-Abril 2009 59

U n i v e r s i d a d d e G u a n a j u a t o

Note that the proposed method basically requires
the implementation of two custom classes, while MFC
requires the implementation of fi ve classes. If each class
is stored in a pair of fi les (a header fi le *.h and a source
fi le *.cpp), the proposed method requires four fi les, in
contrast, an MDI application deployed using MFC re-
quires ten fi les, see Figure 12. On the other hand and
despite the fact that a Win32 application may be imple-
mented using only two fi les, its structure makes the
code diffi cult to read and maintain, Thus, it can be
seen that the proposed method is simpler than exist-
ing methods, and its structure makes the development,
creation and maintenance of MDI applications easy.

In order to properly evaluate the proposed method,
the Multigraph application was deployed using the
proposed method and MFC. All the experiments were
performed on a computer running Microsoft Windows
XP on an Intel Pentium 4 CPU 3.2 GHz, 1.00 GB of
RAM. First, we proceeded to measure the time the cli-
ent requires to create a fi xed number of MDI children
by running the program 100 times and averaging the
creation time of each experiment. The mean value
obtained from these 100 measurements is shown in
Figure 10. As it can be seen from this fi gure, MFC
takes approximately twice the time to create the same
amount of children than using the proposed method.
This extra time may be due to the natural overhead of
an MFC application.

Another performance test that can be used to eval-
uate a Windows application is message-processing
time. We proceeded to send a series of messages to the
active child and measure the time it takes the active
child to empty its queue. We performed these experi-
ment 100 times. Figure 11 shows the mean value of

these experiments. As it can be seen, the MFC appli-
cation takes considerably longer to empty is message
queue than the application deployed using the pro-
posed method. This is a typical consequence of using
the message map required by an MFC application.

CONCLUSIONS

An MDI application is a special kind of application that
allows managing several documents at the same time.
MDI offers a common platform to deploy commercial
application or perform research analysis in a shared
environment. An MDI application can be deployed us-
ing MFC or Win32. While applications deployed using
Win32 are much faster and effi cient than applications
deployed MFC, they usually contain several global vari-
ables and are prone to errors. On the other hand, Micro-
soft Visual Studio provides a set of wizards using MFC
to simplify MDI application development. However, MFC
adds an overhead that as a rule results in application
performance degradation. We propose a method to sim-
plify the development of MDI applications. We showed
that our method allows creating clean code that is easy
to read and maintain. The proposed method requires
the derivation of only two custom classes, while MFC
requires fi ve. We also showed that our method offers
a better performance than applications deployed us-
ing MFC; specifi cally the proposed method is generally
twice faster than an MFC application.

Some years ago, two new technologies, Java and the
.NET Platform, emerged changing the way we used to
think about programming. These two technologies have
been used successfully for application development.
However, their main disadvantage is execution time;

Figure 10. Creation Time for MDI children.

Figure 11. Message-processing time for MDI children.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 19 no. 1 Enero-Abril 2009 60

even a MFC application is much faster than a Java or
.NET application. Because the proposed method is based
on pure Win32, it is several times faster than an appli-
cation created with Java or .NET. On the other hand,
Java code is more portable than a Win32 application;
additionally, Java and the Platform .NET offer automatic
object destruction which may improve code quality re-
ducing quality assurance (QA) costs. Finding the correct
balance between development time (which is directly
related with development costs) and application perfor-
mance depends usually on the type of application.

Last, it is important to mention that Win32 practically
emerged with Windows 2000 using NT technology. That
is, the Microsoft technology previously used only on the
server versions of this operating system. Win32 is the
native platform of Windows 2000, XP and Vista. Thus,
Java, MFC and .NET applications require additional soft-
ware installed to be executed by the computer.

Figure 12. Typical MDI fi les using (a) the proposed method, (b) MFC.

ACKNOWLEDGMENTS

The authors would like to thank PROMEP and CONA-
CYT for their support.

REFERENCES

Beveridge, J. and Wiener, R. (1996), Multithreading Applications in Win32: The
Complete Guide to Threads. Addison-Wesley Professional. 251.

Bir M., Bodroghy E., Bor A., Knuth E. and Koves L. (1992) “The Design of DINE:
A DIstributed NEgotiation Support Shell”, In: Decision Support systems: Ex-
periences and Expectations, Proc. of the IFIP TC8/WG8.3 Working Confer-
ence, Fontainebleau, North-Holland. 103 – 114.

Kremer, R. (1993), A Concept Map Based Approach to the Shared Workspace,
Master Thesis, University of Calgary.

MSDN (2005). The MSDN Library: An essential resource for developers using
Microsoft tools, products and technologies. (Win32 and COM Development
> User Interface > Windows User Interface > Windowing) http://msdn.mi-
crosoft.com/library/

Newcomer J. M. (1997), Win32 Programming, Addison-Wesley. Advanced Win-
dows Series. Chapter 17.

Petzold C. (1999). Programming Windows Fifth Edition, Microsoft Press, Red-
mond, Washington 98052. 1173.

Timmer J., Lauk M., Haussler S. and Radt. V. (2000), Cross-spectral analysis of
tremor time series. Int. J. Bifurcation Chaos. V10-11. 2595 – 2610.

Williams A., (2000), Windows 2000 Systems Programming Black Book, Coriolis,
Scottsdale, AZ 85260. 7 – 10.

Yuan F. (2000), Windows Graphics Programming, Prentice Hall Inc. Upper Saddle
River, NJ 07458. 8 – 20.

