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INTRODUCTION

Weather radar information (Met Offi ce, 2008) is widely and easily available, displayed as rainfall precipitation 
on national or regional maps (the likes of the Met Offi ce, UK, National Weather Service, US, and Servicio Meteo-
rológico Nacional, Mex.), but, from the UK experience, it is rarely used as input data in fl ood forecasting models; 
though there are active efforts in their promotion as presented in Moore et al., (2004). Among the problems ari-
sing from the operation of radars are: ground clutter, anomalous propagation, bright, band, Z-R relationship, 
and radar calibration (Collier, 1996). In spite of these diffi culties, the advantages from radar data maintain the 

radar hydrology community working on overcoming such problems, see for 
example, (Joss and Waldvogel 1990), (Smith 1990), and (Illingworth et al., 
2000). Harrison et al., (2000) examined the steps taken by The Met Offi ce, in 
the UK, where data used here were generated to address these problems.

The development of Artifi cial Neural Networks (ANNs) began approxima-
tely 50 years ago (McCulloch and Pitts, 1943), trying to emulate neurons in 
the human brain. Mathematical descriptions can be consulted elsewhere, for 
example, Haykin, (1998), Fine (1999) and Cichocki and Unbehauen, (1993) 
present ANNs for general purposes. The ASCE Task committee (Govindara-

Palabras clave:
Red neuronal artifi cial; Lluvia-fl ujo; Modelo 
distribuido; Modelo no distribuido; Radar 
meteorológico.

Keywords:  
Artifi cial neural network; Rainfall-runoff; 
Distributed model; Lumped model; Wea-
ther radar.

ABSTRACT

The application of ANNs (Artifi cial Neural Networks) has been studied by many researchers 
in modelling rainfall runoff processes. However, the work so far has been focused on the ra-
infall data from traditional raingauges. Weather radar is a modern technology which could 
provide high resolution rainfall in time and space. In this study, a comparison in rainfall 
runoff modelling between the raingauge and weather radar has been carried out.  The data 
were collected from Brue catchment in Southwest of England, with 49 raingauges covering 
136 km2 and two C-band weather radars. This raingauge network is extremely dense (for 
research purposes) and does not represent the usual raingauge density in operational fl ood 
forecasting systems. The ANN models were set up with both lumped and spatial rainfall 
input. The results showed that raingauge data outperformed radar data in all the events 
tested, regardless of the lumped and spatial input.

RESUMEN

La aplicación de Redes Neuronales Artifi ciales (RNA) en el modelado de lluvia-fl ujo ha sido 
estudiada ampliamente. Sin embargo, hasta ahora se han utilizado datos provenientes de 
pluviómetros tradicionales. Los radares meteorológicos son una tecnología moderna que 
puede proveer datos de lluvia de alta resolución en tiempo y espacio. Este es un trabajo de 
comparación en el modelado lluvia-fl ujo entre pluviómetros y radares meteorológicos. Los 
datos provienen de la cuenca del río Brue en el suroeste de Inglaterra, con 49 pluviómetros 
cubriendo 136 km2 y dos radares meteorológicos en la banda C. Esta red de pluviómetros 
es extremadamente densa (para investigación) y no representa la densidad usual en siste-
mas de predicción de inundaciones. Los modelos de RNA fueron implementados con datos 
de entrada de lluvia tanto espaciados como no distribuidos. Los resultados muestran que 
los datos de los pluviómetros fueron mejores que los datos de los radares en todos los 
eventos probados.
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ju, 2000a and b) published an excellent two-part se-
ries introduction to ANNs in hydrologic applications. 
Dawson and Wilby (1998) present a very descriptive 
application example.

The ability of ANNs to associate input arguments to 
target values, independently of differences in dimen-
sion and magnitude, generates the expectation to dis-
cover the relationship level between radar estimations 
and runoff measures. To address this issue a com-
parison exercise was undertaken between raingauge 
and radar estimations from the “Natural Environment 
Research Council – HYdrological Radar EXperiment” 
(NERC HYREX) project. These two data series were 
used to feed a rainfall-runoff model based on ANNs. 
The radar data were structured in two arrangements: 
as a lumped model taking the average value among all 
the squares overlapping the Brue catchment, and as 
a distributed model where the spatial (geographical) 
variations are considered explicitly. 

METHOD

Radar and Raingauge Data

The NERC HYREX project generated rainfall estimates 
from raingauges and from weather radars. A network 
of raingauges was installed across the Brue catch-
ment, in Somerset, South-West England. Radar rain-
fall data were obtained from continuously scanning 
C-band radars (operating on a 4-8 cm wavelength) at 
Wardon Hill, 30 km south of the catchment, at Cobba-
combe Cross, 70 km to the west, and an experimental 
Doppler dual-polarisation S-band radar at Chilbolton, 
see fi gure 1. The Brue catchment is overlapped by 14 
of the 5 km squares which form the radar data grid 
displayed in fi gure 2.

This grid of radar data presents spatial and temporal 
variations. Fig. 3 shows hyetographs for squares D, G, 
and L (from grid displayed in fi gure 2) along the same 
time period: 20:45 UTC (Coordinated Universal Time), 
17 January to 0230 24 January 1995. These hyetogra-
phs present a general similar patter with variations at 
some specifi c points. Rainfall precipitation from the ra-
ingauge network and radar grid has been averaged to 
produce one-dimension rainfall series from each system. 
Radar rainfall estimations are given in instantaneous 
values of mm hr-1. Raingauge data series, obtained by 
the network of 49 raingauges were generated, likewise, 
every 15 minutes. The accumulated rainfall along those 
15 minutes was multiplied by 4 to present it in mm hr-1. 
Figure 4 compares the two average rainfall series; the 
period coincides with that of fi gure 3. The river fl ow was 
measured at Lovington, Somerset.

Figure 1. Radars overlapping the Brue catchment. Adapted from Moore et al., 
(2000)

Figure 2. Radar grid overlapping the Brue catchment. Adapted from Moore et 
al., (2000).

Figure 3. Hyetographs from radar squares.
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The cumulative rainfall from radar and raingauge 
is shown in fi gure 5. In this plot the gap between both 
cumulative series goes up to 28.9 mm at the end of the 
150-hr period and it is just 5.1 mm 34 hours before. 
These discrepancies between both estimation methods, 
weather radars and raingauges, will be put on test by 
the same ANN model in order to asses their accuracy 
in relation to the generated fl ow. This ANN model ge-
nerated different network architectures for each one of 
the two data structures and the two data sources used 
in this work to get the best fl ow estimations.

Running the model with average rainfall data made 
it work like a lumped model, that is, the spatial (geo-
graphic) variations of rainfall values were averaged. 
Figure 6 plots a radar average rainfall series against 
the single values of each one of the points overlapping 
the Brue catchment. The display covered the period 
from 0515 to 2130 UTC on 08 January 1996.

The radar rainfall series available contained many 
short periods of missing data; this situation limited 
the number of periods with enough available values to 
train and test the ANN model. Nevertheless, the tests 
allowed a proper comparison among the different op-
tions employed to run the model.

Artifi cial Neural Network Model

The model used in this work is described in detail in 
(Cerda-Villafaña, 2005, pp. 51-58); hence, following is 
a brief description.

The model is based in a feedforward ANN, trained 
by the backpropagation algorithm, which convergen-
ce properties are clearly presented in (Bertsekas and 
Tsitsiklis, 1996). The selection of the best suited ar-
chitecture was performed by a Genetic Algorithm. Be-
sides the pre-processed data series an extra element 
is added to the input: the values of moving average 
windows Al. The window extension or number of ave-
rage data is represented by Na. Table 1 describes the 
range of parameter values for the ANN for two different 
data structures presented in the next section. The fi -
nal ANN architecture for each data structure and data 
source is described in Table 2. Matlab was the soft-
ware package used in this project.

Proposed Data Structures

The rainfall data has been structured as a matrix of 
14 columns (one for each 5-km-square overlapping 
the Brue catchment) by n rows, where n is the num-
ber of data units in the selected period of time (every 
15-minutes). These data series have been used by the 
ANN model through two different implementations:

Figure 4. Comparison between raingauge and radar hyetographs.

Figure 5. Cumulative hyetographs estimated by rain gauge and radar.

Figure 6. Radar average and single values of rainfall.
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Parameter Range
Average values

Range
Matrix and average values

Number of layers Nl 3-5 3-5

Number of neurons on 
each layer Nn

20 in fi rst layer
1 in last layer

4-26 (in increments of 2) 
in hidden layers

71 in fi rst layer
1 in last layer

44-76 (in increments of 
2) in hidden layers

Previous average-
rainfall inputs Al

0-2
0-2

Number of average 
data Na

20-100 (in increments 
of 20)

20-100 (in increments 
of 20)

Learning rate Variable: 0,2 – 0,001 Variable: 0,2 – 0,001

Arquitecture Data from weather 
radars

Data from 
raingauges

For average values 3 layers
20 – 16 – 1

3 layers
20 – 22 – 1

For matrix and average values 3 layers
20 – 18 – 1

3 layers
20 – 16 – 1

Previous average-rainfall inputs 
Al

1
1

Number of average data Na 80 80

Table 2.
 Best set of the ANN model’s parameters for the Brue catchment using matrix and average values

Figure 7. Matrix and average values graphical description.

Table 1. 
Range of the ANN model’s parameters for the Brue catchment using matrix and average values.

1. Average values. One-dimen-
sion rainfall series. Every value 
in this series is a row-average or 
average of the 14 columns, co-
ming from the radar grid, aligned 
on time. This implementation is si-
milar to the raingauge series. The 
signal pre-processing is identical to 
the implementation applied in the 
case of the raingauge data. It inclu-
ded the IIR fi ltering with 18 coeffi -
cients, mean removal and resizing 
of the data series. An average of 80 
previous values was added as one 
of the inputs to the ANN model.

2. Matrix and average values. A 
matrix of distributed values at time 
t plus row-average values at times 
t - 1, t - 2, ... and t - 6. Figure 7 
shows a graphical description of 
this implementation. The matrix 
displayed in fi gure 2, presented 
here at time t represents the 14 
distributed values of rainfall esti-
mation overlapping the Brue ca-
tchment. This grid represents the 
values from the weather radars 
and was taken straight from the 
squares A to N, as they are shown 
in fi gure 2. Those from the rain-
gauges were combined among the 
raingauges deployed on the same 
squares as the weather radar data 
grid. All these values were fi ltered 
along time with the previous values 
corresponding to the same spatial 
position, making the fi ltering work 
on data series like the three series 
presented in fi gure 3. The average 
of 80 previous average values was 
equally added to the model.

RESULTS

The fi gures 8, 9 and 10 present the 
results showing the measured va-
lues as “observed” and the values 
obtained by the model as “simula-
ted”. The fi rst data set to train and 
test the ANN model was from the 
winter months: February 1995 for 
training the model and January 
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Figure 8. Results for the period described in Table 3: (a) matrix and average-va-
lues radar, (b) average radar, and (c) raingauge.

Figure 9. Results for the period described in Table 4: (a) matrix and average-va-
lues radar, (b) average radar, and (c) raingauge.

(a)

(b)

(c)

(a)

(b)

(c)
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1996 for testing it. Table 3 presents the exact dates 
and times applied to the model.

The results using these data series are displayed in 
fi gure 8. The effi ciency R2 went from 0.936 in the case 
of the raingauge data structure, to 0.798 for matrices 
and average values, or structure 2. From the two ra-
dar data, average values had the best performance (R2 
= 0.828). It is, nevertheless, lower than that obtained 
by the model running raingauge data.

The second data used to run the ANN model was 
from winter months too: all from January, but from 
year 1996 for training the model and from 1998 for 
testing it. Table 4 presents the precise dates and times 
applied to the model. The results from these data se-
ries are shown in fi gure 9. In this case, the effi ciency 
R2 was lower compared to the previous test. The hig-
hest value was likewise from the raingauge data model 
with an R2 = 0.871. The effi ciency for the radar data 
structures went from 0.693 in the case of the matrix 
and average values or structure 2 to R2 = 0.454 for the 
average values. The performance for the radar data 
was, as for the previous test, lower than that obtained 
by the model running raingauge data.

The last data set to be tested came from a summer 
month: August. This season is characterised by low 
fl ow, being the opposite of winter. The time period is 
presented in Table 5.

Running low fl ow the effi ciency decreased drama-
tically; hence, to get a better assessment of the model 
performance, the Root Mean Square Error (RMSE) was 
employed as a second performance indicator. Figure 
10 displays the four results from the different data. 
Raingauge data generated the highest effi ciency, R2 = 
0.195, and though this value is low compared to the 
two previous tests, the RMSE = 0:0248 demonstrates 
that the model generated a fl ow with a small deviation 
from the observed fl ow. When testing the model with 
radar data, in this occasion it was the matrices and 
average values the structure with the lowest RMSE = 
0:944. (WMO, 1992) indicates that, in global terms, 
the estimation could be considered acceptable.

In each one of the three tests presented in this sec-
tion the performance was always better for the model 
running raingauge data.

DISCUSSION

ANN models have been widely used in rainfall runoff 
modelling with raingauges as their rainfall input. The 
novelty of this study is in the application of ANN with 
lumped and spatial rainfall information by weather 

Figure 10. Results for the period described in Table 5: (a) matrix and average-
values radar, (b) average radar, and (c) raingauge.

(a)

(b)

(c)
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radar. It can be found that despite the decades of 
research in improving weather radar data quality, a 
dense raingauge network can still easily outperform 
its modern counterpart as an input for hydrological 
modelling. It is also interesting to note that the spatial 
rainfall provided by the weather radar produced poo-
rer modelling results than the lumped ones, indicating 
that ANN is not suitable for accepting spatial rainfall 
information due to the multiple increasing in its node 
number which could prevent effective training of the 
model.  It should be pointed out that the raingauge 
network in this study is extremely dense (49 tipping 
bucket gauges over a small catchment of 136 km2) and 
does not represent the usual raingauge density in an 
operational fl ood forecasting system. Further work is 
needed to compare an operational raingauge network 
(with sparse raingauge density) to the weather radar 
network data.
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Set Time 
(h) Start time End time

Training 299.75 16 h 15 28 Aug 95 04 h 00 10 Sep 95
Validation 127.15 18 h 00 16 Aug 96 01 h 15 22 Aug 96

Test 127.15 01 h 30 22 Aug 96 08 h 45 27 Aug 96

Table 5.
Data sets for test 3.

Set Time 
(h) Start time End time

Training 355.75 13 h 30 02 Feb 95 09 h 15 17 Feb 95
Validation 168 14 h 15 03 Jan 96 14 h 15 10 Jan 96

Test 166.30 14 h 30 10 Jan 96 13 h 00 17 Jan 96

Table 3.
Data sets for test 1.

Set Time 
(h) Start time End time

Training 334.25 14 h 45 03 Jan 96 13 h 00 17 Jan 96
Validation 85.75 11 h 30 12 Jan 98 01 h 15 16 Jan 98

Test 85 01 h 30 16 Jan 98 14 h 30 19 Jan 98

Table 4.
Data sets for test 2.
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