
Vol. 17 no. 1 Enero-Abril 2007 29

U n i v e r s i d a d d e G u a n a j u a t o

A Method to Ease the Deployment of Web
Applications that Involve Database Systems
Sergio Ledesma*, Donato Hernández Fusilier*, Antonio Vega Corona* y Juan Gabriel Cervantes Aviña*.

INTRODUCTION

The World Wide Web (WWW) is a distributed system of computers spread all over the Internet. Its enormous
popularity stems from the fact that it has a graphical user-friendly interface (Tanenbaum, 2002). To warranty
competitiveness, corporations have tried to slightly enhance the Web browser by adding non-standard func-

tionality, causing a nightmare for Web developers during the last decade.

The WWW provides an enormous means of information on roughly all
subjects through linked documents, search engine services, and transaction
services. All these services are known as resources. To easily fi nd and use
these services, Uniform Resource Locators (URL) were conveniently defi ned.
From a user perspective, an URL is a simple text string that is typed at the
top of the Web browser in the address fi eld. This string specifi es the exact
location of an Internet resource.

Keywords:
Graphic user interface; Integration; Data-
base; Web application deployment; SQL.

Palabras clave:
Interfase gráfi ca del usuario; Integración;
Base de datos; Desarrollo de aplicaciones
Web; SQL.

ABSTRACT

The continuous growth of the Internet has driven people, all around the globe, to perform
transactions on-line, search information or navigate using a browser. As more people feel
comfortable using a Web browser, more software companies are trying to alternatively offer
Web interfaces to provide access to their applications. The consequent nature of the Web
connection and the restrictions imposed by the available bandwidth make the successful
integration of Web applications and database systems critical. Because popular database
applications provide a user interface to edit and maintain the information in the database
and because each column in the database table maps to a graphic user interface control,
the deployment of these applications can be time consuming; appropriate fi eld validation
and referential integrity rules must be observed. Thus, an object-oriented approach is pro-
posed to ease the development of applications that involve database systems.

RESUMEN

El crecimiento continuo de la Internet ha permitido a las personas, alrededor de todo mun-
do, realizar transacciones en línea, buscar información o navegar usando el explorador
de la Web. A medida que más gente se siente cómoda usando los exploradores de Web,
más empresas productoras de software tratan de ofrecer interfaces Web como una forma
alternativa para proporcionar acceso a sus aplicaciones. La naturaleza de la conexión Web
y las restricciones impuestas por el ancho de banda disponible, hacen la integración de
aplicaciones Web y los sistemas de bases de datos críticas. Debido a que las aplicaciones
que usan bases de datos proporcionan una interfase gráfi ca para editar la información en la
base de datos y debido a que cada columna en una tabla de una base de datos corresponde
a un control en una interfase gráfi ca, el desarrollo de estas aplicaciones puede consumir
un tiempo considerable, ya que la validación de campos y reglas de integridad referencial
deben ser respetadas. Se propone un diseño orientado a objetos para así facilitar el desa-
rrollo de aplicaciones que usan sistemas de bases de datos.

* Facultad de Ingeniería Mecánica Eléctrica y Electrónica (FIMEE) de la Universidad de Guanajuato. Tampico #912. Col. Bellavista. C. P. 36730. Salamanca, Guanajuato. Correos electrónicos:
selo@salamanca.ugto.mx; donato@salamanca.ugto.mx; tono@salamanca.ugto.mx y avina@salamanca.ugto.mx.

Recibido: 29 de Junio de 2006
Aceptado: 26 de Febrero de 2007

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 17 no. 1 Enero-Abril 2007 30

Web pages are written in a special format known
as Hyper Text Markup Language (HTML); see the HTTP
and HTML home pages in the Internet. Because Web
browsers are capable of displaying HTML documents,
they transform the raw data sent from a Web server
to graphical information in the user’s display. Unfor-
tunately, the HTML specifi cation establishes a very
simple structure, making very diffi cult to deploy Web
applications. Several vendors have created several Web
technologies to simplify Web application deployment.
Unfortunately, Web programming is not easy. The pro-
posed method targets this problem, simplifying the de-
ployment of Web applications through the use of the IS-
torable interface that will be discussed in detail later.

In recent years, the cutting edge of software de-
velopment has shifted from traditional “fat clients”
apps to Web applications. The integration of back-
end systems and seamless data sharing, once the holy
grail of corporate IT departments, have given way to
concerns over lower total cost of ownership, zero-foot-
print installs, and the ability to run applications from
anywhere an Internet connection is available (Prosise,
2002). Web applications like eBay or Amazon.com are
complex Web applications that involve database sys-
tems. The deployment of this kind of applications can
be time consuming because current Web technologies
do not offer a simple integration between the user in-
terface and the database system. Generally, they offer
some graphical tools or proprietary Web controls to
simplify this process. The proposed method provides
an Object-Oriented programming solution to make
simpler the deployment of Web applications.

The Web server

Web pages can be static or dynamic. They are almost
always stored in a Web server, although they can be
stored and edited in a personal computer. Static Web
pages are text fi les that are written using the HTML
language; a HTML editor or a simple text editor can be
used to write these pages. In general, static pages are
not useful to deploy Web applications because their
content does not change unless the HTML fi le is modi-
fi ed. Pages with dynamic-content are HTML pages that
are typically written or modify in the fl y; that is they
are written when the user requests the specifi ed URL.
Most programming languages can be used to create
dynamic Web pages. Some popular languages are C/
C++, Java, Perl, C#, PHP, Visual Basic (VB) and Cold-
Fusion. Each language is associated with a specifi c
Web technology; i.e., C# is used on ASP.NET technol-
ogy, and Java is used on Java Servlet technology (Li-
ang, 2001).

It would be impossible to talk about the Web with-
out mentioning the Extensible Markup Language,
XML. In a few short years, XML has grown from an
obscure specifi cation into the world’s de facto data
language. Whereas HTML is designed to express ap-
pearance, XML is designed to express raw information
absent any implied notion about how the data should
be rendered (Prosise, 2002). It is a simple language
that is entirely text based, and has no predefi ned tags
as HTML does. XML documents can be converted into
HTML on the fl y using Extensible Stylesheet Language
Transformations, XSLT, impacting considerably the
deployment of Web applications.

Basically, the Web server technology and the pro-
gramming language determine the type of database
access to be used. Most programming languages sup-
port Open Data Base Connectivity (ODBC). ODBC is
a widely accepted application programming interface
(API) for database access. Most vendors support the
ODBC 3.0 API in addition to their own native SQL
APIs. A driver is a translation code that offers inte-
gration between two modules. In this case, the ODBC
driver is one that accepts a call and translates it into
the native database language.

The Java language supports Java Data Base Con-
nectivity (JDBC) technology. It is an API that provides
cross-DBMS connectivity to a wide range of SQL da-
tabases; see the JDBC page at http://java.sun.com/
products/jdbc/ (Hall and Brown, 2001).

OLE DB is a data access technology that originated
in the zenith of COM. MSDASQL was a generic solu-
tion that permitted databases without an OLE DB pro-
vider of their own but that had ODBC drivers available
to be accessed using the OLE DB API. ADO.NET is an
easy database API of the .NET Framework. Other da-
tabase systems, like MySQL, Oracle, dBase, Microsoft
Excel, Microsoft Access, FoxPro, etc., provide their
own drivers, or these can usually be downloaded from
the Internet.

Object-Oriented Programming

For dynamic-content Web pages, a computer program
writes a Web document each time a user requests the
specifi ed page (Felton, 1997). Programs are built us-
ing computer instructions. Traditionally, a program
is a list of computer instructions that execute in se-
quence; this list of instructions is called code. Unfor-
tunately, for large applications a list of instructions
is diffi cult to read and maintain. In the last years,
many programmers have been using Object-Oriented

Vol. 17 no. 1 Enero-Abril 2007 31

U n i v e r s i d a d d e G u a n a j u a t o

Programming (OOP) instead of a list of instructions,
because OOP allows them to easily read and maintain
large programs (see Abiteboul and Beeri, 1995).

OOP organizes the program in a comprehensive
set of individual units. Units are called objects and
can directly interact with each other. OOP instantly
brings the domain of real-world applications to the
programming domain; i.e., a management school sys-
tem may be composed of student, faculty and class-
room objects. Software objects live in the program-
ming domain, and are used to model objects from the
real-world domain. An object has variables (proper-
ties) and methods; i.e., an object of type student has
an expected graduation date property and a learn()
method. Objects can interact with each other through
their methods. All objects are purposely created, used
and utterly destroyed. A class is an object specifi ca-
tion; i.e., the student class specifi es that all student
objects have an expected graduation date, and all of
them learn. A class is a technical blueprint or proto-
type that clearly defi nes the variables and the meth-
ods common to all objects of a particular kind (see
the on-line Java Tutorial). Several objects of the same
class can be created; i.e., a University may use the
same class to create several objects of type student to
fi ll a classroom, each student has an expected gradu-
ation date even though each student has a particular
expected graduation date value.

To guarantee reusability, a base class should be
as generic as possible. Reusability is the probability of
using a class more than once with slight or no modifi -
cation. Because implementing a method may express-
ly restrict the generic behavior of a base class, some-
times it is appropriate to have a class that declares a
method without implementing it. These are known as
abstract classes, and cannot be used directly to build
objects. Abstract classes represent abstract concepts,
and they are used through derivation to create classes
that are not abstract; i.e., an abstract box class may
specify that a box can be open without specifying ex-
pressly how to open it; that is, all derived classes from
the box class need to implement the open() method
to become non-abstract; i.e., a cardboard box may be
open with a different procedure (method implementa-
tion) than an aluminum box, both of them are boxes
and can be opened but they are open with a different
technique.

Finally, an interface is a formal agreement of ser-
vices by providing a comprehensive set of methods
and constant declarations. A class may implement an
interface by implementing all the methods declared
in that interface. A class may implement zero, one or

more interfaces as required. A class that implements
a contractual interface is able to communicate with
objects that required that interface. In this paper, the
IStorable interface will be proposed as a bilateral con-
tract of service between a Web element and a master
data provider called Storer. The IStorable interface
is used to integrate the displaying behavior of a Web
control with its data editing facility. For example an
edit box may implement the IStorable interface, if it
wants to participate on a database transaction. Thus,
the edit box control is responsible of validation and
the IStorable interface allows this control to load data
from the database as well as update the database with
very little additional code.

UML Notation

The Object Management Group (OMG) has created the
technical specifi cation for the Unifi ed Modeling Lan-
guage (UML), see (Wieringa, 1998). This technical spec-
ifi cation can be retrieved using the URL http://www.
uml.org. OMG is a not-for-profi t computer industry
specifi cations consortium. UML is used to model the
structure and functionality of a system (Roques, 2004
and Holt, 2004). UML notation will be used to describe
the integration process between web applications and
database systems.

PROPOSED METHOD

To illustrate the signifi cant interest of the integration
between Web interfaces and database systems, two
commercial products will be briefl y discussed. The
fi rst family of products to be discussed is PeopleSoft
Enterprise applications; they are designed for meeting
complex business requirements (see the PeopleSoft
web site). These products kindly provide web services
integration with multi-vendor and homegrown appli-
cations and can be easily confi gured and adapted to
meet the customer requirements. PeopleSoft products
were originally designed as Desktop applications and
have been on the market for several years. To access
the PeopleSoft database, users needed to install the
client software. For big corporations, the Information
Technology (IT) team had to typically spend several
hours installing and maintaining the client program
in all their users’ computers; this installation pro-
cess is time and money consuming. Some years ago,
PeopleSoft created a Web interface to access its da-
tabase, eliminating the need of the client software.
Despite the fact that the PeopleSoft Web interface
may be slower than the traditional Desktop client, it
provides direct access from any computer to thePeo-
pleSoft database with no special software installed.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 17 no. 1 Enero-Abril 2007 32

Another good example is Microsoft Outlook, the popu-
lar tool that comes with Microsoft Internet Explorer to
read and send e-mail. Microsoft Corporation created
Outlook Web Access (OWA) as part of Microsoft Ex-
change (Microsoft Mail Server.) OWA provides e-mail
services using the Web browser, removing completely
the need to install any e-mail client software in the
user’s computer. Finally, note that the performance
of these two products depends directly on the tech-
nology that brings together the Graphic User Inter-
face (GUI) and the database (see Barga et al., 2004
and Conn, 2002).

OOP description of Web elements

Figure 1 shows the UML diagram of some of the most
common Web elements. Consider that an appropri-
ate namespace, called Web, has been clearly defi ned
and that all the classes in Figure 1 are inside this
namespace. Starting at the root of the diagram, the
Web Object is the most generic class to describe Web
elements. The Object class is abstract because the get-
TagName() method is abstract; this basically implies
that a derived non-abstract class must implement this
method. The getTagName() method allows the object
itself to retrieve the name of the respective HTML tag for
rendering purposes, i.e., html, div, span, table, form, hr,
etc. As it is clearly shown in the UML diagram of Figure
1, any Web object is capable of rendering through its
render() method, which uses the HTML format to suc-
cessfully write the appropriate data utilizing the static
Server property, see Figure 4 (b), of a Site object. Usu-
ally, the Web site itself calls the render() method of the
main Web page each time a user’s request arrives to the
Web server.

From left to right, the second column of Figure 1
shows some of the simplest Web elements: Br, Hr and
Page. The br and hr tags do not have a consequent
closing tag; the Br object renders as
, and is
used to create a new line by stopping more Web ele-
ments to display on the current line. Additionally, Br
objects can be used to increase the space between two
consecutive paragraphs. Br and Hr are non-abstract
classes because they properly implement the getTag-
Name() method, which returns the text string “br” for
the Br class, and “hr” for the Hr class. The Hr class
allows creating a horizontal separator in a Web page.
Essentially, these two basic classes will help under-
standing more complex classes, such as Node and In-
put, which will be used to seamlessly integrate Web
elements with data providers. Note that a Web tag that
does not have a consequent closing tag, may optional-
ly follow the Extensible Markup Language (XML) nota-

tion; i.e., use
 instead of
 or <hr /> instead
or <hr> (see Rusty, 2003).

Each Web page has a head variable and a unique
body as it can be seen from Figure 1. The Body and
Head classes are derived directly from the abstract
class Node. The render() method of the Page class is
called by the Web site; in turn, each Web page calls
the render() methods of its head and its body. Sur-
prisingly, the getTagName() method of the Page class
must not return “page” but the text string “html”,
which is the standard HTML tag for a page.

Derived directly from the Object class, there are
two abstract classes: Element and DoubleTagEle-
ment. The Element class has a comprehensive set of
properties to control outward appearance through the
use of Cascade Style Sheets (CSS) and programmed
behavior by using Scripts. The DoubleTagElement is
used to describe simple tags that require a consequent
closing tag; i.e., title, option, script, etc. The classes
Title, Option and Script are non-abstract classes be-
cause they implement the abstract method getTag-
Name() offi cially declared in the base class.

In general, Web pages are built following a hier-
archy structure, that is, a Web element may have
children and its children may have children as well.
A good example of this hierarchy structure is a Web
table (which is represented by the table tag). Tables
have one, two or more rows, and each row has at least
one column. This tree-structure of Web pages is de-
scribed through the abstract Node class of Figure 1.
The Node class has an array of Web Objects to rep-
resent its children. A Node object may have zero or
more children; i.e., a Web page has two children, head
and body. When a Node object is rendered, the Node
object itself calls the render() method of its children.
Most popular Web elements are directly derived from
the Node class as it can be seen from Figure 1.

The abstract Input class is one of the most inter-
esting classes when deploying Web applications. This
class represents the input HTML tag and is useful for
user input. Most Web applications frequently use the
input tag to appropriately collect information from the
user. Generally, the Input class symbolizes the abstract
concept of user input interface without restricting the
fundamental nature of the input. To successfully cre-
ate a non-abstract class from the base Input class,
the derived class must implement the getInputType()
method to specify its input type: text, radio, checkbox,
submit, button or password. Figure 1 shows the UML
diagram of the most popular Web controls. Note that
this diagram conveniently includes complex controls

Vol. 17 no. 1 Enero-Abril 2007 33

U n i v e r s i d a d d e G u a n a j u a t o

like the drop down box and the radio button group in-
stead of the raw controls: combo box option and radio
button. The adequately use of complex controls instead
of the simple ones can greatly reduce the code when
integrating Web interfaces with database systems.

The Input class has only one property, required,
which is used for non-null values. This property is

very important because an Input object is responsible
for checking if a required value is not present. The
object may optionally display a message informing the
user or notify other Web or data objects of this event.

OOP description of Web form elements

Figure 1. UML diagram of some typical Web objects.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 17 no. 1 Enero-Abril 2007 34

In general, dynamic Web pages require the use of Web
forms to collect information using a Web browser.
These forms are composed of individual Web controls.
Unfortunately, the deployment of Web or Windows
forms can be time consuming; each control in the form
must usually be synchronized before opening the form
with information a database. When the user clicks on
the OK button of the form to accept the transaction,
the program must validate and collect data from all
controls and update appropriately the database. The
deployment of this kind of forms can be time consum-
ing because typical database applications have several
tables and these tables may have several columns (see
Liu, 1999), the proposed method reduces this time by
making typical form controls to implement the IStor-
able interface as it will be described next.

Figure 2 shows the Yahoo spam protection page;
this page was selected because it clearly shows the
most popular Web controls. At the top of Figure 2 the
most popular Web controls, the Input Box and Button
controls, are shown. The Input Box provides a two-way
communication between the user and a Web browser;
some text may optionally be initially displayed and ut-
terly modifi ed. The Button control is used to execute
actions; i.e. in the Yahoo page shown in Figure 2, the
button at the top initiates a Web search.

Figure 2 shows other frequently used Web controls,
the radio button, the check box and the drop down
box (also known as combo box). The radio button con-
trol receives its name from the old car radios that used
mechanical buttons to store radio stations; i.e., only
one button could be pushed at the same time. Radio
buttons allow a user to choose one alternative from a
given set of options; i.e. a Web trip planner offers the
feature of selecting the prefer departure day: Monday,
Tuesday, Wednesday, etc. The combo box provides the
same functionally as a group of radio buttons. Howev-
er, the combo box takes less space at the price of hid-
ing all available options; to display this set options the
user must click the combo box control with a mouse.
The check box control is used for yes/no questions;
i.e. a Web trip planner may have a check box to indi-
cate whether or not the traveler would like to have his
meals included. In the Yahoo span protection page,
Figure 2, the radio button group is used to specify
what action should be automatically taken when a
spam message arrives. In the same page, there is one
check box at the bottom of the page; it asks whether
or not the user would like to automatically add the
sender’s e-mail address to his blocked address list.
There are other Web controls that are not discussed in
this paper because they are not relevant to the deploy-
ment of database Web applications.

The InputBox control is an input text control and
its UML diagram is shown in Figure 3. All InputBox
objects have three properties: value, readOnly and
regularExpression. The value property represents
the actual text or value stored in the control, the re-
adOnly property disables the control (preventing text
changes), and the regularExpression property allows
data checking through the use of regular expressions.
The class implementation of the RadioButtonGroup
and the DropDownBox is pretty similar; both classes
have a selectedIndex property to specify the index of
the option that is selected. For most popular database
applications, the drop down box and a radio button
group map directly into a lookup table; i.e., a database
table stores the letters ‘I’ and ‘D’ instead of storing the
text International and Domestic. A look up table pro-
vides full text description for each letter in this table.
The CheckBox class is used to manage Boolean values
and usually maps into a yes/no fi eld (known as bit or
bool) in a database system.

The major problem when deploying Web applica-
tions that involve database systems is proper inte-
gration. Most database systems contain data tables
that are organized following the normal forms of the
relational databases (see Arenas and Libkin, 2004);
however, tables and table columns must map to GUI Figure 2. The Yahoo spam protection page showing most popular Web controls.

Vol. 17 no. 1 Enero-Abril 2007 35

U n i v e r s i d a d d e G u a n a j u a t o

controls making the deployment of web applications
diffi cult. While the Web controls, input box, combo
box, radio button and check box, require a simple
HTML tag to be properly created, they are not designed
to perform complex tasks. To facilitate the success-
ful integration of these Web controls with a database
system, the interface IStorable is proposed. Figure 3
shows the UML diagram of the IStorable interface.
This interface provides a direct link between the data-
base system and a Web form. IStorable is pretty sim-
ple and has only two properties and one method. The
dataType property is used to expressly indicate the
data type stored by the control. For example, a check
box control will have a Boolean data type; that is the
only valid values are true and false (yes or no). The
second property of the IStorable interface is name
of type string; this value stores the column name of
the corresponding column in the database table. Con-
sider, for example, an employee database table with
a column to store the employee’s age, in this case the
property name of the IStorable interface establishes

the name of the age column as declared inside the
database system. IsValid() is the only method of the
IStorable interface and returns true if the control has
valid data or false otherwise. In essence, each Web
control is derived from the Input class, and should
implement the IStorable interface when the control
actively participates on data transactions.

RESULTS

The IStorable interface provides a contractual inter-
action between the database system and a Web server.
The Input class provides HTML rendering informa-
tion, while the IStorable interface adequately provides
rules for storing and retrieving data. The major advan-
tage of separating these two functions of a Web con-
trol is isolation between the control appearance and
its behavior (see Noble et al., 2002).

Figure 4 (a), shows the UML diagram of the Stor-
er class, which brings together the Web controls of

Figure 3. The UML diagram of most common Web controls.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 17 no. 1 Enero-Abril 2007 36

a Web page and a database system. The Storer class is derived directly
from a DoubleTagElement, meaning that a Storer object can be placed
as element of a Web page, and has the required ability of rendering. The
class Storer offers an elegant technique to provide data services to Web
applications, because it is responsible of controlling and displaying er-
rors by managing all data transactions. The Storer class has an admin-
istered collection of subscribers; each subscriber must be a Web object
that implements the IStorable interface. A Web page that provides da-
tabase access must include a Storer object, and all its input controls
must be subscribers of the Web page Storer object; which is responsible
of negotiating any transaction with the database system.

When a Web page is fi rst open, the unique Storer object in that page
is responsible of extracting the pertinent information from the database

and notifying its subscribers of up-
date value events; this functional-
ity is conveniently provided by the
loadData() method of the Storer
class, as it can be seen from Fig-
ure 4 (a). The validateSubscriber()
method of the Storer class pro-
vides a means to know whether or
not all its subscribers have a valid
value. If a Web page provides the
capability to create records in the
respective database system, the
Storer object will eventually call
the validateSubscribers() method
before inserting or updating data
to the database system. If the vali-
dateSubscribers() method report-
edly returns true, then the insert()
method can be safely called to in-
troduce a new record into the data-
base appropriately. For those Web
pages that provide editing capabili-
ties, the Storer update() method
can be used after a probative value
of true is returned by the validate-
Subscribers() method.

The Storer object will consis-
tently render nothing, if no errors
have been reportedly occurred. For
those cases when a call to load-
Data(), insert() or update() gener-
ate errors, the Storer object will
render the error description using
standard HTML through its Dou-
bleTagElement behavior as shown
in Figure 4 (a).

Figure 4 (b), shows the UML di-
agram of a typical Web Server and
a Web Site. The Web server and
Web site were tested using Micro-
soft Internet Information Services,
but other Web server software can
be used. The Web site has the re-
sponsibility to attend the user’s
request by fi nding out what page
to render while the Web server pro-
vides environment variables for ap-
propriate rendering.

When deploying Web applica-
tions, the Storer class can reduce
considerably the deploying time

Figure 4. (a) The Storer UML diagram, (b) The Web Site UML diagram.

Vol. 17 no. 1 Enero-Abril 2007 37

U n i v e r s i d a d d e G u a n a j u a t o

of code deploying time as it will be
explained next.

Figure 5 shows the function
GetRowCount() of the Storer
class. This function allows retriev-
ing the number of rows returned
by the SQL statement SELECT; in
general, this function can be pretty
handy on application deployment.
The implementation of GetRow-
Count() is straightforward but not
simple; as it can be seen from this
fi gure executing an SQL statement
for retrieving information must be
done using a try and catch block.
Without the use of the Storer class
the programmer must frequently
type code similar to the one shown
in Figure 5.

To clearly illustrate how the
Storer class can dramatically re-
duce the code size, consider Fig-
ure 6. This fi gure shows part of
the code of a web application de-
ployed using ASP.NET to manage
university courses. The fi rst func-
tion shown is used to fi nd out if a
specifi c course is a co-requisite for
other course(s). As it can be seen
the Storer class simplifi es the code
substantially; only two lines of code
are basically required compared
with 18 lines that are required if
the Storer class were not used. The
second function in Figure 6 is ex-
ecuted whenever the user wants to
intentionally leave the current web
page. By taking a look at the code,
it can be noticed that the Storer
class validates user input and de-
cides to perform a SQL statement:
UPDATE or INSERT using its
helpful function GetRowCount().
Thus, a pretty compact code can
be writing by using the Storer
class. If the same function would
have been written without the as-
sistance of the Storer class, a very
much complicated code must be
required; several SQL statements
should have been built manually
using user input, and appropriate

Figure 5. Typical C# code to read from a database.

Figure 6. Code showing the Storer class in a typical web application.

because most of the database access coding and error handling is inside
the Storer class. Moving the database transaction coding to one place
(the Storer class) not only reduces the code size, but also makes the code
easy to read and maintain. For those cases where the Storer class cannot
be used because the database organization does not map directly into the
Web interface, typical database access code might be used. The Storer
class and the IStorable interface can be easily implemented using any
Object-Oriented Programming language (C++, C#, Java, or other). The
use of the Storer class and the IStorable interface provides a reduction

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 17 no. 1 Enero-Abril 2007 38

validation/database-access code should have been re-
quired. Finally, it is important to mention that most
of the error handling functionality is implemented di-
rectly by the Storer class. For example, during de-
ployment time, the Storer class will provide immedi-
ate feedback to the developer with detail information
to accurately detect and correct an error, i.e. the exact
SQL statement that caused the error and why.

Finally, it is important to mention other Web tech-
nologies that ease the integration between database
systems and Web interfaces. One popular technology
is ADO.NET, which is the successor of ADO and OLE
DB. This technology integrates effortlessly with XML,
bridging the gap between relational data and XML and
simplifying the task of moving back and forth between
them (Prosise, 2002). ADO.NET works bests with Web
forms (a Microsoft Corporation technology). Both,
ADO.NET and Web from offer a set of tools and Web
controls to simplify the deployment of Web applica-
tions with databases. However, they required propri-
etary Web controls and they do not offer a complete
integration between the Web application and the da-
tabase system. Other popular Web technology is Java
Server Pages (JSP); similar to ASP.NET is it tries to
simplify the deployment of Web applications; however,
a more easy to use OOP solution is required.

DISCUSSION AND CONCLUSIONS

Despite the fact that OOP can be used to considerably
simplify the integration of GUIs and database sys-
tems, many Web applications make use of structured
programming for database access coding. In this case,
structured programming is used on languages that
support OOP; that is, they do not use an object to nego-
tiate all database transactions. We propose the Storer
class and the IStorable interface to ease the proper
integration between GUIs and database systems. A
Storer object readily maintains a list of objects that
implement the IStorable interface. Each subscriber
keeps a bilateral contract with the Storer object to
store and retrieve data. The Storer object is respon-
sible of inserting, updating and deleting any data from
the database; it is also responsible of reporting of any
results to other objects and the user. We showed that
the Storer class can noticeably simplify the deploy-
ment of applications that involve database systems;
the resulting code is easy to read and maintain, not to
be mentioned much more compact.

REFERENCES

Abiteboul, S. and Beeri, C. (1995). The Power of Languages for the Manipulation
of Complex Values. The VLDB Journal — The International Journal on Very
Large Data Bases 4(4) 727-794.

Arenas, M. and Libkin L. (2004). A Normal Form for XML Documents. ACM Trans-
actions on Database Systems (TODS) 29(1) 195-232.

Barga, R., Lomet, D., Shegalov, G. and Weikum G. (2004). Recovery Guarantees
for Internet Applications. ACM Transactions on Internet Technology (TOIT)
4(3) 289-328.

Conn, R. (2002). Software Systems Requirements. Journal on Educational Re-
sources in Computing (JERIC) 2(4).

Felton, M. (1997). CGI Internet Programming with C++ and C. Lucent Technologies.
Inc. An Alan R. Apt Book Prentice Hall Upper Saddler River New Jersey USA.

Hall, M. and Brown L. (2001). Core Web Programming. The Sun Microsystems
Press, Java Series, Second Edition, Prentice Hall PTR, Upper Saddler River,
NJ USA. p. 903.

Holt, J. (2004). UML for Systems Engineering. Peter Peregrinus Ltd. London
England.

HTTP - Hypertext Transfer Protocol Page (2006). World Wide Web Consortium.
http://www.w3.org/Protocols/

HyperText Markup Language (HTML) Home Page (2006). World Wide Web Con-
sortium. http://www.w3.org/MarkUp/

JavaTM Tutorial. (2006). Trail: Learning the Java Language Lesson: Classes
and Inheritance. http://java.sun.com/docs/books/tutorial/java/javaOO/ab-
stract.html

Liang Y. D. (2001). Introduction to Java Programming, Second Edition. Prentice
Hall Upper Saddle River, New Jersey USA. 899 –902.

Liu, M. (1999). Deductive Database Languages: Problems and Solutions. ACM
Computing Surveys (CSUR) 31(1) 27-62.

Noble, J., Biddle, R. and Tempero E. (2002). Methaphor and Metonymy in Ob-
ject-Oriented Design Patterns. Proceedings of the twenty-fi fth Australasian
conference on Computer 187-195.

PeopleSoft Web Site. (2007). Oracle and PeopleSoft Corporation. http://www.
peoplesoft.com

Prosise, J. (2002). Programming Microsoft .NET, Microsoft Press, Redmond,
Washington USA. 177–190.

Roques, P. (2004). UML in Practice. John Wiley & Sons Ltd. The Atrium, Southern
Gate, Chichester, West Sussex, England.

Rusty, H. E., Scott W. M. (2003). XML in a Nutshell. 3a ed. O’Reilly. Sebastopol,
CA, USA.

Tanenbaum A. S. (2002). Computer Networks 4a ed. Vrije University, Amsterdam,
The Netherlands. Prentice Hall PTR.

Wieringa R. (1998). A Survey of Structured and Object-Oriented Software Speci-
fi cation Methods and Techniques. ACM Computing Surveys (CSUR) 30(4)
459-527.

