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Abstract 
Bio-CAD	and	in-silico	experimentation	currently	have	a	growing	interest	in	biomedical	applications	where	scientific	data	coming	
from	real	samples	are	used	to	evaluate	physical	properties.	In	this	sense,	analyzing	the	pore-size	distribution	is	a	demanding	task	
to	help	interpret	the	characteristics	of	porous	materials	by	partitioning	it	into	its	constituent	pores.	Pores	are	defined	intuitively	
as	local	openings	that	can	be	interconnected	by	narrow	apertures	called	throats	that	control	a	non-wetting	phase	invasion	in	a	
physical	method.	There	are	several	approaches	to	characterize	the	pore	space	in	terms	of	its	constituent	pores,	several	of	them	
requiring	prior	computation	of	a	skeleton.	This	paper	presents	a	new	approach	to	characterize	the	pore	space,	in	terms	of	a	pore-
size	distribution,	which	does	not	require	the	skeleton	computation.	Throats	are	identified	using	a	new	decomposition	model	that	
performs	a	spatial	partition	of	the	object	in	a	non-hierarchical	sweep-based	way	consisting	of	a	set	of	disjoint	boxes.	This	approach	
enables	the	characterization	of	the	pore	space	in	terms	of	a	pore-size	distribution.	

Keywords:	Porous	media;	pore-size	distribution;	skeleton;	computer	simulation.	

Resumen 
El	 bio-diseño	 asistido	 por	 computadora	 (Bio-CAD)	 y	 la	 experimentación	 in-silico	 están	 teniendo	 un	 creciente	 interés	 en	
aplicaciones	biomédicas,	donde	se	utilizan	datos	científicos	provenientes	de	muestras	reales	para	calcular	propiedades	físicas.	En	
este	sentido,	analizar	la	distribución	de	tamaño	de	poros	es	una	tarea	demandante	para	ayudar	a	interpretar	las	características	de	
materiales	porosos,	al	particionarlo	en	sus	poros	constituyentes.	Los	poros	se	definen	intuitivamente	como	aperturas	locales	que	
pueden	estar	interconectadas	por	aberturas	llamadas	gargantas,	que	controlan	una	invasión	de	fase	no-humedad	en	un	método	
físico.	Existen	diversos	enfoques	para	caracterizar	el	espacio	poroso	en	términos	de	sus	poros	constituyentes,	muchos	de	ellos	
requieren	el	 cálculo	previo	de	un	esqueleto.	Este	 artículo	presenta	un	nuevo	enfoque	para	 caracterizar	 el	 espacio	poroso,	 en	
términos	de	una	distribución	del	tamaño	de	poro,	que	no	requiere	el	cálculo	del	esqueleto.	Las	gargantas	se	identifican	utilizando	
un	 nuevo	modelo	 de	 descomposición	 que	 realiza	 una	 partición	 espacial	 del	 objeto	 en	 una	 forma	 basada	 en	 un	 barrido	 no-
jerárquico,	formado	por	un	conjunto	de	cajas	disjuntas.	Este	enfoque	permite	la	caracterización	del	espacio	poroso	en	términos	
de	una	distribución	de	tamaño	de	poros.	

Palabras	clave:	Medios	porosos;	distribución	de	tamaño	de	poros;	esqueleto;	simulación	por	computadora. 	
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Introduction 
Geometrical and topological representations of the internal structures of samples used in Bio-CAD (bones, 

biomaterials, rocks and other material samples) are necessary to evaluate their physical properties. Such 

samples have two disjoint spaces, the pore space and solid space; thus, they can be represented with binary 

models. The pore space, in turn, is made up of a collection of pores that can be intuitively defined as local 

openings interconnected by narrow apertures called throats that limit the access to a larger pore (Garboczi, 

Bentz & Martys, 1999) (figure 1). 

 

Figure	1.	Two	pores	separated	by	a	throat.	
Source:	Authors’	own	elaboration	

	
Usually, porous datasets are considered adequate for analysis if they have their holes 

homogeneously distributed along the sample, and the pore size is notably smaller than the dataset size 

(Garboczi et al., 1999); that is, they contain complete holes and the object resolution is high enough to 

clearly define their shape. 

The study of porous materials’ properties is of great utility in several disciplines. In medicine, they 

are used to evaluate the degree of osteoporosis and the adequacy of synthetic biomaterial implants for bone 

regeneration, among other applications. Bone regeneration occurs in the cavities of the implants where 

blood can flow. Biomaterial implants can be designed as tissue scaffolds, that is, extracellular matrices onto 

which cells can attach and then grow and form new tissues (Giannitelli, Accoto, Trombetta & Rainer, 2014; 

León-Mancilla, Araiza-Téllez, Flores-Flores & Piña-Barba, 2016). In geology, the porous morphology and 

pore sizes are related to the mineral fabric (Klaver, Desbois, Urai & Littke, 2012) and to its oil-bearing and 

hydrological properties (Silin, Jin & Patzek, 2004). 

Likewise, brine inclusions in sea ice can be formalized in terms of their morphology and pore 

connectivity (Golden et al., 2007). Silica sands need to have a high sphericity, in that where the rounder and 

more spherical the particle is, the more resistant that particle is to crushing or fragmenting (Schroth, Istok, 

Ahearn & Selker, 1996). In engineering, the durability of cementitious materials is associated with certain 

mechanical and transport properties that can be evaluated based on the properties of the pore space 

(Stroeven & Guo, 2006). 

There are several methods for describing porous materials. Some of them have been traditionally 

computed using 2D methodologies, and their results extended to 3D by means of stereologic techniques, 

while other parameters can be computed directly from the volume dataset. 
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Background 

Pore-size distribution 

Pore-size distribution is usually computed with mercury intrusion porosimetry (MIP), an in-vitro 

experiment based on the capillary law governing liquid penetration into small pores. In this technique, 

mercury is intruded into the sample at increasing pressures, causing the fluid to flow through smaller 

apertures. 

Virtual porosimetry is an in-silico experimentation for general porous materials that simulates MIP 

at incremental pressures (Garboczi et al., 1999). All separated components of the pore space filled at a given 

pressure are considered pores and labeled with the diameter corresponding to the applied pressure. This is 

a flood-fill methodology that uses a previously computed 2D (surface) skeleton as a guide to simulate 

mercury intrusion from the entry points into the pore space. Moreover, the skeleton is labeled at each point 

with the corresponding distance (the maximum radius) used to allow or stop the mercury intrusion 

simulation, i.e., when this radius is smaller than the radius for the current pressure, the simulated intrusion 

at this pressure stops. Regions corresponding to these smaller radii are the throats. This method is applied 

to biomaterial samples (Vergés, Ayala, Grau & Tost, 2008b) and soil samples (Delerue, Lomov, Parnas, 

Verpoest & Wevers, 2003). The latter uses the obtained pore network to compute the permeability. Several 

methods define the initial set of entry points as those pore voxels which are connected to exterior; however, 

it can be predefined to allow more freedom to the user in the simulation. 

There are other methods that do not require skeleton computation to simulate MIP (Rodríguez, Cruz, 

Vergés & Ayala, 2011); instead, they use an iterative process that considers the diameters corresponding to 

pressures. At each iteration, geometric tests detect throats for the corresponding diameter, and a 

connected-component labeling process collects the region invaded by the mercury. 

There are other approaches to compute the pore-size histogram and the pore graph. Some are 

related to the shape-analysis discipline and use a 2D skeleton as a tool to devise the shape and size of pores. 

These approaches are heuristic methods that cover the pore space with overlapping spheres, so that the 

pores are computed as the unions and differences of maximal spheres centered at skeleton points. These 

methods can be applied to sand samples (Silin et al., 2004), bone scaffolds (Cleynenbreugel, 2005), and 

biomaterial samples (Vergés et al., 2008a). 

Other approaches based on the 1D (curve)-skeleton computation detect throats as the absolute 

minima of the skeleton. Thus, pores are defined as the regions limited by throats and solid space (Lindquist 

& Venkatarangan, 1999). A graph is obtained directly from the 1D skeleton, in which nodes correspond to 

pores and edges to throats (Liang, Ioannidis & Chatzis, 2000). Alternatively, the minimal cost paths 

connecting boundary points can be computed instead of skeletons to allow methods based on porosimetry, 

as well as sphere positioning, to be applied (Schena & Favretto, 2007). 

Another technique for computing pore-size histograms is granulometry. This methodology 

consists in the application of successive morphological openings and does not require the computation of 

a skeleton (Cnudde, Cwirzen, Maddchaele & Jacobs, 2009; Hilpert & Miller, 2001; Schulz, Becker, Wiegmann, 

Mukherjee & Wang, 2007; Vogel, Tölke, Schulz, Krafczyk & Roth, 2005). A specific set of discrete spheres 

with diameters 𝐷 such that 𝑆(𝐷) ⊂ 𝑆(𝐷 + 1) can be used, thereby ensuring that a larger ball will never reach 

a cavity in which a smaller ball cannot enter (Hilpert & Miller, 2001). Physical MIP has been compared with 

a granulometry-based method (Cnudde et al., 2009). 
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Throats can also be detected based on the negative Gaussian curvature of the surface. This method 

is used to decompose the solid space into single particles and to compute mechanical properties such as 

grain size and coordination number (number of contacts per grain) (Theile & Schneebeli, 2011). 

Representation Models 

In most of the reported literature, the operations to study binary volume datasets are performed directly on 

the classical voxel model. However, in the field of volume analysis and visualization, several alternative 

models have been devised for specific purposes. 

Hierarchical structures such as octrees and kd-trees have been used for Boolean operations (Samet, 

1990), connected-component labeling (CCL) (Dillencourt, Samet & Tamminen, 1992), and thinning 

(Quadros, Shimada & Owen, 2004; Wong, Shih & Su, 2006). Octrees are used as a means of compacting 

regions and getting rid of the large amount of empty space in the extraction of isosurfaces (Wilhems & 

Gelder, 1992). Their hierarchy is suitable for multi-resolution when dealing with very large data sets 

(Andújar, Brunet & Ayala, 2002; LaMar, Hamann & Joy, 1999), as well as to simplify isosurfaces (Vanderhyde 

& Szymczak, 2008). Kd-trees have been used to extract two-manifold isosurfaces (Greß & Klein, 2004). 

There are models that store surface voxels, thereby gaining storage and computational efficiency. 

The semi-boundary representation affords direct access to surface voxels and performs fast visualization 

and manipulation operations (Grevera, Udupa & Odhner, 2000). Certain methods of erosion, dilation and 

CCL use this representation (Thurfjell, Bengtsson & Nordin, 1995). The slice-based binary shell 

representation stores only surface voxels and is used to render binary volumes (Kim, Seo & Shin, 2001). 

In this paper, the Compact Union of Disjoint Boxes (CUDB) decomposition model is used. With this 

model the geometry is partitioned in a non-hierarchical, sweep-based way. An algorithm has been devised 

to detect the throats based on this model. 

OPP and the CUDB model 

A binary voxel model represents an object as the union of its foreground voxels, and its continuous analog 

is an orthogonal pseudo-polyhedra (OPP) (Lachaud & Montanvert, 2000). OPP have been used in 2D to 

represent the extracted polygons from numerical control data (Park & Choi, 2001). Some 3D applications of 

OPP are: general computer graphics applications, such as geometric transformations and Boolean 

operations (Bournez, Maler & Pnueli, 1999; Esperança & Samet, 1998); skeleton computation (instead of 

iterative peeling techniques) (Eppstein & Mumford, 2010; Martı ́nez, Pla & Vigo, 2013); orthogonal hull 

computation (Biedl & Genç, 2011; Biswas, Bhowmick, Sarkar & Bhattacharya, 2012); boundary extraction 

(Vigo, Pla, Ayala & Martínez, 2012); and model simplification (Cruz-Matías & Ayala, 2014). OPP have been 

also used in theory of hybrid systems to model the solutions of reachable states (Bournez et al., 1999; Dang 

& Maler, 1998). 

The Compact Union of Disjoint Boxes (CUDB) (Cruz-Matías & Ayala, 2017) is a special kind of spatial 

partitioning representation, where an OPP is decomposed in a list of disjoint boxes. These models can be 

obtained from the voxel model and other alternative models. The conversions algorithms have been 

published (Cruz-Matías & Ayala, 2017). 

Let 𝑃 be an OPP and 𝛱* a plane whose normal is parallel (without loss of generality) to the X axis, 

intersecting it at 𝑥 = 𝑐, where 𝑐 ranges from −∞ to +∞. Then, this plane sweeps the whole space as 𝑐 varies 

within its range, intersecting 𝑃 at certain intervals. Let us assume that this intersection changes at 𝑐 =
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𝐶1, . . . , 𝐶4. More formally, 𝑃 ∩ 𝛱6789 ≠ 𝑃 ∩ 𝛱67;9, ∀𝑖 = 1, . . . , 𝑛, where 𝛿 is an arbitrarily small quantity. Then, 

𝐶@(𝑃) = 𝑃 ∩ 𝛱*7 is called a cut of 𝑃 and 𝑆@(𝑃) = 𝑃 ∩ 𝛱6A, for any 𝐶B such that 𝐶@ < 𝐶B < 𝐶@;1, is called a section of 

𝑃. Figure 2 shows an OPP with its cuts and sections perpendicular to the X axis, since work is done with 

bounded regions, 𝑆D(𝑃) = ∅ and 𝑆4(𝑃) = ∅, where 𝑛 is the total number of cuts along a given coordinate axis. 

 

Figure	2.	Left:	an	orthogonal	polyhedron	with	five	cuts.	Right:	its	sequence	of	four	prisms	
with	the	representative	sections	(X	direction).	

Source:	Authors’	own	elaboration.	
	

An OPP can be represented with a sequence of orthogonal prisms represented by their section. 

Moreover, if the same reasoning is applied to the representative section of each prism, an OPP can be 

represented as a sequence of boxes. CUDB represents an OPP with such an ordered sequence of boxes in a 

compact way, as many boxes generated by the aforementioned split process are merged into one in several 

parts of the model. CUDB is axis-aligned like octrees and bintrees, but the partition is done along the object 

geometry as in binary space partitioning (BSP). Depending on the order of the axes, chosen to split the data, 

a 3D object can be decomposed into six different sets of boxes: XYZ, XZY, YXZ, YZX, ZXY, ZYX, and the set 

will be ordered according to the chosen configuration. Figure 3 illustrates two possible decompositions of 

the model in figure 2 (left). In 2D, an object can be decomposed into two different sets: XY and YX. 

 

Figure	3.	XYZ-CUDB	(left)	and	ZYX-CUDB	(right)	representation	for	the	model	in	figure	2,	both	with	seven	boxes.	
Source:	Authors’	own	elaboration	

	
In the CUDB model, the adjacency information of the boxes is stored. Each box has neighboring 

boxes in only two orthogonal directions: A- and B-direction, and for each one there are two opposite 

senses; so, four arrays of pointers to the neighboring boxes (two for each direction) are enough to preserve 

the adjacency information that is required for future operations. These arrays are defined as A-backward 

neighbors (ABN), A-forward neighbors (AFN), B-backward neighbors (BBN) and B-forward neighbors 

(BFN). For more details of this model see (Cruz-Matías & Ayala, 2017). 
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Methodology 

Geometric Pore Space Partition 

Unlike traditional approaches, which require the skeleton, the method adopted in this study uses the 2D 

CUDB-encoded pore space as input. It consists of two different sorted sets of boxes for 2D samples, in 

which a box represents a cluster of pixels. 

The basic steps of our algorithm are: 

1. First remove the unreachable regions. 

2. Compute all throats with length less than the smaller dimension of the model. 

3. Analyze each throat in order to detect the shorter ones that join the solid regions. These 

resulting throats will partition the pore space. 

Remove Unreachable Regions 

As in real porosimetry, only those components connected to the exterior (reachable components) are able 

to be filled, so totally interior components (cavities) will not be considered. 

In order to remove the unreachable regions, a CUDB-based connected component labeling is 

applied, where those boxes that are connected to the exterior are labeled with the same label; boxes with a 

different label are removed. Figure 4 illustrates the removal process with a 2D example. 

 

Figure	4.	Removal	process	for	a	sample.	Left:	pore	space	(in	black),	unreachable	regions	are	marked	in	blue.	
Right:	resulting	pore	space.	

Source:	Authors’	own	elaboration.	
	

2D Throats Detection 

In the method used in this study, throats can be orthogonal or oblique and all of them are shaped as lines 

(figure 5). In order to detect orthogonal and oblique throats, the pore space must be exhaustively scanned 

in the two 2D main directions. 
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Figure	5.	2D	throats	configurations	(in	yellow).	Left	and	middle:	Orthogonal	throats.	Right:	Oblique	throat.	

Source:	Authors’	own	elaboration.	
	

Orthogonal Throats Detection 

Boxes in 2D-CUDB have neighboring boxes only in the A-direction; therefore, orthogonal throats can exist 

in any of these directions. As the main axis that splits the model is A, orthogonal throats are detected in this 

direction. Thus, the two AB-sorted CUDB encodings of the pore space are required to detect all orthogonal 

throats. 

Let 𝛽@ and 𝛽G be two A-adjacent boxes and 𝛽@
H

 and 𝛽G
H

 the open sets1 of their projections, respectively, 

over a segment perpendicular to the A-coordinate. There is an orthogonal throat between 𝛽@ and 𝛽G if 

I𝛽@
H
∩ 𝛽G

H
J ≠ ∅. This condition can be easily evaluated with the neighborhood information in CUDB. 

Note that the orthogonal throat is the intersection of two adjacent boxes, as shown in figure 5 (left) 

and figure 5 (middle). Algorithm 1 shows the steps of the orthogonal throat detection process for a single 

AB-sorting (figure 6). 

 

Figure	6.	Algorithm	to	detect	the	ortogonal	throats.	
Source:	Authors’	own	elaboration.	

	

  

 
 
1A	set	is	called	an	open	set	if	it	does	not	contain	any	of	its	boundaries.	
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Oblique Throats Detection 

Note that an oblique 2D throat is an oblique segment. The next process generates the oblique throats for an 

AB-sorted CUDB which, due to the characteristics of the CUDB model, are the same generated for the 

corresponding BA-sorted CUDB. 

Let 𝛽@81, 𝛽@ and 𝛽@;1 be three consecutive A-adjacent boxes in an AB-sorted CUDB, and let 𝛽@
H

 be the 

open set of the 𝛽@ projection over a segment perpendicular to the A-coordinate. Then, an oblique throat 

exists between 𝛽@81 and 𝛽@;1 if the next conditions are satisfied (figure 7 (a) illustrates these conditions): 

1. I𝛽@81
H
∩ 𝛽@;1

H
J ≠ ∅ 

2. 𝛽@81
H
⊈ 𝛽@;1

H
  

3. 𝛽@81
H
⊉ 𝛽@;1

H
  

4. I𝛽@81
H
∩ 𝛽@;1

H
J ⊂ 𝛽@

H
 

 

Figure	7.	Oblique	throats.	(a)	Simplest	case	of	oblique	throat	(with	just	one	intermediate	box).	(b)	Oblique	throat	with	more	than	one	
intermediate	box.	(c)	Non	oblique	throat.	

Source:	Authors’	own	elaboration.	
	

However, oblique throats are not restricted to three consecutive boxes. Depending on the geometry of 

the object, an oblique throat can occur between two boxes, 𝛽M and 𝛽N, which have more than one 

intermediate box between them, as shown in figure 6(b). In these cases, all the previous conditions must 

be satisfied for 𝛽M and 𝛽N instead of 𝛽@81 and 𝛽@;1, respectively. Therefore, these conditions are rewritten as: 

1. I𝛽M
H
⊂ 𝛽N

H
J ≠ ∅  

2. 𝛽M
H
⊄ 𝛽N

H
  

3. 𝛽M
H
⊉ 𝛽N

H
  

4. I𝛽M
H
∩ 𝛽N

H
J ⊂ 𝛽@

H
, ∀𝑖 ∨ 𝑆 < 𝑖 < 𝑇  

Condition 1 means that 𝛽M
H
∩ 𝛽N

H
 must be contained in every intermediate box projection between 

𝛽M and 𝛽N. In addition, figure 2 shows why it is necessary to consider open sets for the above conditions. 
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Otherwise, the aforementioned conditions would be satisfied, and the algorithm would detect oblique 

throats where none exists. 

The previous conditions are used to detect an oblique throat between 𝛽M and 𝛽N. Although a rectangle 

is obtained (see the rectangle highlighted in orange color in figures 7a and 7b), the strategy to compute the 

throat is by considering the diagonal included in the mentioned rectangle (see the inclined line highlighted 

in yellow color in figures 7a and 7b). This strategy allows to separate the pore space in two regions in the 

current scan direction. 

A box 𝛽M can generate several oblique throats with its consecutive boxes in the A-direction (figure 

8a). Therefore, in order to detect all the possible oblique throats, all consecutive boxes of 𝛽M must be 

scanned. The method used here searches for any configuration that satisfies the oblique throat conditions. 

Conditions 1 and 3 are required conditions to stop the search process, while the others are not. The 

search stops in case that Condition 1 is not satisfied, as every subsequent box 𝛽N will not satisfy Condition 

4 in the following iterations (figure 7). When Condition 1 is not satisfied, every subsequent box 𝛽N will not 

either satisfy Condition 2 or 4 in the following iterations (figure 7). Moreover, the search must be also 

stopped when the distance between 𝛽M. 𝑉1 and 𝛽N. 𝑉1 in the A-coordinate is greater than a certain distance 

𝐷, this distance has been defined as the smaller dimension of the model. However, when conditions 2 and 

4 are not satisfied, there may still be subsequent boxes that define throats that satisfy all conditions (figures 

8d and 8e). 

Algorithms 2 and 3 show the steps of the oblique throat detection using a recursive strategy for a 

single AB-sorting (figure 9 and 10). Figure 11 shows an example of throats computation. In this figure, black 

and white represent the pore and solid spaces respectively. 

 

Figure	8.	2D	oblique	throats	scanning	process.	(a)	A	box	that	generates	several	oblique	throats.	(b)	Condition	1	is	not	satisfied.	(c)	Condition	3	is	
not	satisfied.	(d)	Condition	2	is	not	satisfied.	(e)	Condition	4	is	not	satisfied.	

Source:	Authors’	own	elaboration.	
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Figure	9.	Recursive	algorithm	to	detect	the	oblique	throats.	

Source:	Authors’	own	elaboration.	

	
Figure	10.	Algorithm	to	detect	the	obliques	throats.	

Source:	Authors’	own	elaboration.	
	

Partitioning of the Pore Space 

An accurate identification of pore throats is important in the partitioning of the pore space. It is necessary 

to be careful not to generate too many throats which can produce a large number of small pores, which 

would correspond primarily to the roughness of the pore wall interface. 

From the point of view of the utility of the resulting pore and throats size distributions in network 

simulations, it is desirable to partition the pore space into nodal pores (pores that are also topological nodes) 

separated by throat cross-sectional surfaces (Ioannidis, Chatzis & Kwiecien, 1999). This is possible if pore 

necks are identified as the minimum distance that connect the solid space. In methods like those by Liang 

et al. (2000) and Lindquist & Venkatarangan (1999), throats are identified through a search for minima in 

the hydraulic radius of individual pore space, where each branch of the skeleton (link) is considered as a 

separate pore. 
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Although the method used follows the previous idea, the authors of the study do not rely on prior 

computation of the skeleton; instead, all the possible throats generated with the strategy described below 

are computed, then, such throats are analyzed in order to obtain those that better split the pore space. 

The strategy to split the pore space is to determine the shortest throats that join the solid regions. 

Therefore, the first step consists in sorting the detected throats by length. To obtain the solid regions, a CCL 

process is applied to the CUDB-encoded solid space. For instance, figure 11 shows that this sample has 10 

solid regions. 

 

Figure	11.	Throats	detection	for	a	sample.	Left:	YX	CUDB-encoded	pore	space.	Right:	detected	orthogonal	and	oblique	throats.	
Source:	Authors’	own	elaboration.	

	
Once the throats have been sorted and the solid regions have been detected, it is necessary to 

determine the final throats that will split the pore space. Let 𝑆H and 𝑆S be two solid regions, each of the 

ordered throats is analyzed to obtain the pair (𝑆H, 𝑆S) joined by this throat. This detection is done by 

evaluating each box of each CUDB-encoded solid region. However, this process can be speeded up by 

using the bounding box to do previous discards. 

Figure 12 (left) shows the resulting throats after the previous strategy. Note in this sample that 

although there are no throats joining the same solid regions, several intersected throats exist. Some of these 

throats are longer than some paths formed by other throats. This problem can be solved by applying a 

Dijkstra's algorithm (Dijkstra, 1959). Every time a throat is found for the pair (𝑆H, 𝑆S), it is examined whether 

there is a shorter path formed with previously calculated throats; if this is the case, the throat is omitted. 

Implementation of these criteria is shown in figure 12 (middle). 
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Figure	12.	Partitioning	of	the	pore	space.	Left:	partitioning	at	the	resulting	throats	(21	throats).	Middle:	Implementation	of	the	final	criteria	to	
detect	throats	(15	throats).	Right:	Partitioning	using	a	skeleton-based	method.	

Source:	Authors’	own	elaboration.	
	

Once the final throats have been detected, the object is subdivided along each one of them to 

partition the pore space into its constituent pores. To achieve this subdivision, a unit-width orthogonal 

polygon 2D is built for each throat. This OPP is obtained by the 2D scan-conversion of the segment which 

represent the throat. Therefore, the difference between the OPP-object and the OPP-throat produces the 

object subdivided along the throat. Figure 13 illustrates the subdivision of the object along two oblique 

throats. 

Once the pores have been correctly separated, their area is straightforward computed using the 

CUDB-encoded pore. 

 

Figure	13.	Left:	Scan	conversion	of	one	orthogonal	and	one	oblique	throat.	Right:	Difference	between	the	object	and	the	scan-converted	
segments.	

Source:	Authors’	own	elaboration.	

Results and discussion 
The method presented here, like those based on prior computation of the skeleton, is a geometric approach 

that computes the expected solution. 

Figure 11 shows a well-defined structure for which it is easy to determine the theoretical solution. 

This model has a size of 450 x 450 pixels and contains squares of 85, 58 and 30 pixels per side connected 

with small lines (throats) of size 2 and 4 pixels. Note in this figure that the method is invariant to rotation to 
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detect the throats and to divide the pore space correctly. For more clarity, the pores after the subdivision 

along the throats have been colored. 

 

Figure	14.	Model	of	squares.	Left:	Original	450 × 450.	Right:	Model	rotated	45	clockwise.	
Source:	Authors’	own	elaboration.	

	
The adopted approach has been compared with a skeleton-based approach. The model used to 

explain the partitioning process is the same used in Liang et al. (2000). In figure 9 (middle and right) both 

methods get a quite similar partitioning of the pore space. 

Also, the effects of resolution on the method used here have been tested. Resizing the image does 

not affect the topology of the detected throats. Although the bigger the image, the more throats are 

generated, the method to detect the final throats allows to obtain an almost identical pore space partition. 

Figure 15 shows the minor effects with increasing resolution. Of course, the accuracy of measurements is 

expected to increase as resolution increases. 

 

Figure	15.	Effects	of	increasing	the	size	of	the	image	in	the	method	used	in	this	research.	
Source:	Authors’	own	elaboration.	

	
Finally, sections of several real porous samples have been tested, as shown and described in table 1 

below. Figures 16 to 19 depict the corresponding partitioned porous space and its pore-size distribution. 
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• Spheres: A synthetic model with spheres of a variable size. 

• PLA: A biomaterial sample consisting of polylactic acid (PLA) with a 16 µm3 voxel 

resolution. 

• Soygel: Sample of hydroxyapatite with a soy-based foaming agent for bone prosthetics 

with a 16 µm3 voxel resolution. 

• Stone: A stone sample consisting of sedimentary rock from a Lybian oil-bearing unit with 

a 4.4 µm3 voxel resolution. 

Table	1.  Datasets. For each dataset: size of the sample in pixels, run time (in milliseconds) to 
partition the pore space. 

Dataset	 Size	 Time	(ms)	

Spheres	 450	x	540	 96	

PLA	 314	x	237	 56	

Soygel	 251	x	251	 843	

Stone	 271	x	179	 25	

Source:	Authors’	own	elaboration.	

 
All the real samples have been scanned by Trabeculae® and segmented by thresholding and 

applying noise filtering. The corresponding programs have been written in C++ and tested on a PC 

Intel®Core i7-4600M CPU@2.90GHz with 7.6 GB RAM and running Linux.  

Based on the analysis of the figures and the histograms, it can be concluded that the obtained pore 

size distribution is accurate enough. A more detailed discussion of the comparison of physical and in-silico 

experimentation is beyond the scope of this paper. 

 

Figure	16.	Spheres:	A	synthetic	model.	Left:	Partitioned	porous	space.	Right:	Pore-size	distribution.	
Source:	Author’s	own	elaboration.	
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Figure	17.	PLA:	A	biomaterial	sample.	Left:	Partitioned	porous	space.	Right:	Pore-size	distribution.	

Source:	Author’s	own	elaboration.	

	
Figure	18.	Soygel:	Sample	of	hydroxyapatite.	Left:	Partitioned	porous	space.	Right:	Pore-size	distribution.	

Source:	Author’s	own	elaboration.	

	
Figure	19.	Stone:	A	stone	sample.	Left:	Partitioned	porous	space.	Right:	Pore-size	distribution.	

Source:	Author’s	own	elaboration.	

Conclusions 
A new method to characterize the pore space has been proposed; it does not require prior computation of 

the skeleton. As this prior preprocessing is very time-consuming, this approach achieves a noticeable 

reduction in time. The key feature of the presented method is the process to determine the throats that 

make it possible to separate regions corresponding to different pores. 
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The in-silico approaches are based on the geometry of the analyzed samples, and the results 

obtained are the expected theoretical results, as shown in the results section. 

As a future work, several topics must still be studied. At present, the authors are starting to study how 

to extend this method directly to 3D models and will make contact with biomaterials and geology research 

teams that provide new problems to study and other kinds of real samples. Further, new methods will be 

developed for other parameters, such as connectivity and anisotropy. Moreover, the authors of this 

research are also interested in applying time-varying techniques based on a CUDB model. 
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