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Abstract 
This	article	proposes	a	handy,	accurate,	invertible	and	integrable	expression	for	Dawson’s	function.	It	can	be	observed	that	the	
biggest	 relative	 error	 committed,	 employing	 the	proposed	approximation	here,	 is	 about	2.5%.	Therefore,	 it	 is	noted	 that	 this	
integral	approximation	to	Dawson’s	function,	expressed	only	in	terms	of	elementary	functions,	has	a	maximum	absolute	error	of	
just	7	×	10-3.	As	a	case	study,	the	integral	approximation	proposed	here	will	be	applied	to	a	nonclassical	heat	conduction	problem,	
contributing	to	obtain	a	handy,	accurate,	analytical	approximate	solution	for	that	problem.	

Keywords:	Dawson’s	function;	ordinary	differential	equation;	approximate	methods;	Stefan	problem.	

Resumen 
En	este	artículo	se	propone	una	expresión	compacta	y	precisa	de	la	función	de	Dawson,	la	cual	es	invertible	e	integrable.	Se	observa	
que	el	error	relativo	máximo	que	se	encuentra	empleando	la	aproximación	aquí	propuesta	es	del	2.5%.	Por	consiguiente,	se	hace	
notar	que	la	aproximación	a	la	integral	de	la	función	de	Dawson,	que	se	expresa	solo	en	términos	de	funciones	elementales,	tiene	
un	error	absoluto	máximo	de	7	×	10-3.	A	manera	de	ejemplo,	se	aplicará	la	aproximación	aquí	propuesta	a	un	problema	no-clásico	
de	conducción	de	calor	para	obtener	una	solución	aproximada,	compacta	y	precisa.	

Palabras	clave:	Función	de	Dawson;	ecuaciones	diferenciales	ordinarias;	métodos	aproximados;	problema	de	Stefan.	
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Introduction  
In addition to its theoretical interest, it is well known that Dawson’s integral (or Dawson’s function) arises 

naturally in several physical applications, whereby the research related to this function is relevant. In this 

context, heat conduction problems (Briozzo & Tarzia, 2010; Petrova, Domingo, Tarzia & Turner, 1994) (see 

section 5), theory of electrical oscillations (McCabe, 1974; Weisstein, 2017), relativistic hydrodynamics 

(Scott, 2007), chemical physics in birefringence and dielectric relaxation phenomena in presence of strong 

electric fields (Prigogine & Rice, 2001), among many others, are mentioned. 

The aim of this article is to propose a handy invertible and integrable approximation for 

Dawson’s function. In the literature, there are several Dawson’s function approximations reported; for 

instance, Sykora (2012) proposed various approximation orders with good accuracy, although they are 

not sufficiently simple nor are they hardly invertible and integrable. Moreover, Boyd (2008) proposed 

an accurate approximation for Dawson’s integral, by solving its differential equation using the 

orthogonal rational Chebyshev functions of the second kind; nevertheless, its rational approximation 

is hardly invertible and integrable. In the same way, Cody, Kathleen & Thacher (1970) proposed rational 

approximations for Dawson’s integral, although the accuracy of the reported results was verified only 

in finite intervals and not in the total domain of Dawson’s function. Lether (1997) developed a family 

of rational functions for computing Dawson's integral. Although this work got approximations with a 

low relative error, its expressions are too large to be invertible and integrable. Lether (1998) 

investigated the relation between some rapidly convergent series of exponential functions for 

computing Dawson's integral. Since the approximation is given in terms of an infinite sum of terms 

of the form then this is clearly not invertible nor integrable. Recently, Franta, Necas, Giglia, 

Franta & Ohlídal (2017) proposed an extension of the universal dispersion model, expressing the 

excitonic contributions in terms of linear combinations of Gaussian and truncated Lorentzian terms. 

It appears that the real part of the dielectric function is expressed by Dawson’s functions. Nevertheless, 

this work does not present some analytical approximation for Dawson’s integral. In the same way, 

Abrarov & Quine (2018) proposed a rational approximation for the Dawson’s integral, which can be 

implemented to calculate the complex error function. Although this approach provides good accuracy, 

its rational expression is too complicated to be invertible and integrable. 

An example of the importance of inverting the Dawson’s integral is mentioned by Scott (2007). 

In this work on relativistic hydrodynamics, the time (t) measured by a reference observer is expressed 

in terms of a scale factor (r), which determines the shape of an entropy profile through Dawson’s 

function. His work mentions that in order to complement the solution of the problem in this part, it is 

necessary to invert the mentioned expression in order to obtain r as function of t, and, thus, obtain 

the velocity gradient. This work targets this kind of applications. 

In fact, the subject of inverting and approximating the integral for Dawson’s function is little 

addressed in the literature and this will be the main goal of this work. 

The rest of this paper is organized as follows. In Section 2, the basic idea of the power series 

extender method (PSEM) (Vazquez-Leal & Sarmiento-Reyes, 2015), which plays an important role in 

this work, is introduced. Section 3 will provide a brief introduction to Dawson’s integral. In Section 4, 

the deduction of a handy, accurate, invertible and integrable expression for Dawson’s function is 

provided. Section 5 proposes an application of Dawson’s integral to a non-classical Stefan problem in 

physics. Section 6 discusses the main results obtained and includes a table for the benefit of the 
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readers with the relevant contributions found in this work. Section 7 provides a brief conclusion and, 

finally, Section 8 resumes some results of cubic algebraic equations relevant for this work. 

Basic Concept of PSEM method 

Here it is assumed the case of nonlinear differential equations, expressed in the form   

𝐿(𝑢) + 𝑁(𝑢) − 𝑓(𝑥) = 0, 𝑥 ∈ Ω                                                            (1) 

with a boundary condition given by 

𝐵(𝑢, 𝜕𝑢/𝜕𝜂) = 0,				𝑥 ∈ Γ                                                                   (2) 

 and  are linear and nonlinear operators, respectively, is a known analytic function,  

is a boundary operator, is the boundary of domain and denotes differentiation along the 

normal drawn outwards from  (Cody et al., 1970). 

In accordance with the PSEM methodology (Vazquez-Leal & Sarmiento-Reyes, 2015), the 

solution of (1) is expressed as a power series 

𝑢 = ∑6789 𝜈7𝑥7                                                                     (3) 

where  ( ) denotes the coefficients of the power series. 

It should be mentioned that there is no single way of obtaining (3); thus, some approximate 

methods from the literature could be employed for that purpose such as Homotopy Peturbation 

Method (HPM), Homotopy analysis method (HAM), Variational Iteration Method (VIM), Differential 

Transform Method (DTM), Adomian Decomposition Method (ADM), Taylor Series Method (TSM), and 

Power Series Method (PSM), among others (Vazquez-Leal, Castañeda-Sheissa, Filobello-Niño, 

Sarmiento-Reyes & Sánchez-Orea, 2012). Next, following the PSEM method, it is proposed that the 

solution for (1) can be written as a finite sum of functions in the general form 

𝑢 = 𝑢9 + ∑;<89 𝑓<(𝑥, 𝑢<)                                                                      (4) 

or 

𝑢 = =>?∑
@
AB>CA(D,=A)

E?∑F@GB@HICG(D,=G)
                                                                        (5) 

(Vazquez-Leal & Sarmiento-Reyes, 2015), where  are constants to be determined by PSEM,

 are in principle arbitrary trial functions; and and 2  denote the orders of approximations 

(4) and (5), respectively. It is agreed to denominate (4) and (5), from here on, as the trial function (TF). 

Next, the Taylor series of (4) and (5) is calculated, resulting in the power series 

𝑢 = 𝑢9 + ∑;<89 𝑃<,9 + ∑;<89 ∑678E 𝑃<,7𝑥7                                                                    (6) 

𝑢 = 𝑢9 + ∑;<89 𝑃<,9 + ∑K;<89 ∑678E 𝑃<,7𝑥7                                                                   (7) 
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respectively, where Taylor coefficients  are expressed in terms of parameters . 

After equating/matching the coefficients of power series (6) or (7) with those corresponding to 

(3), the values of  are obtained. Finally, by substituting them into (4) or (5), it is obtained the PSEM 

approximation. It is important to note that (4) or (5) can separately be applied to obtain an approximate 

solution of (1). As a matter of fact, the selection of TF depends on the nature of the problem under 

study. In addition, it is important to remark that if the  functions are chosen to be analytic, then (6) 

and (7) are convergent series (Belser, 1999; Oberguggenberger & Ostermann, 2011; Zill, 2012). 

Some rudiments of Dawson’s integral 

Dawson’s integral is defined by Khan (1990) as 

𝐹(𝑥) = 𝑒NDF ∫D9 𝑒PF𝑑𝑡                                                                  (8) 

As a matter of fact, it is not difficult to prove that satisfies the following initial condition 

problem: 

ST
SD
+ 2𝑥𝐹 = 1, 𝐹(0) = 0                                                               (9) 

On one hand, assuming a power-series expansion of the form  into (9), it is possible 

to know the behavior of near the origin through the following series (Khan, 1990): 

𝐹(𝑥) = ∑6789
(NE)WKW

(K7?E)!!
𝑥K7?E = 𝑥 − K

Y
𝑥Y + Z

E[
𝑥[−. ..                                          (10)  

On the other hand, it is possible to show that, after integrating by parts and employing a 

breakpoint, is properly expressed by the following asymptotic expansion for large values of  

(Khan, 1990). 

𝐹(𝑥) = ∑6789
(K7NE)!!
KWHIDFWHI

= E
KD
+ E

ZD]
+ Y

^D_
+. ..                                                               (11) 

Nevertheless, it will be exposed a notable fact that it is possible to use (11), keeping just the first 

two terms of the series to represent , even for relatively small values of  with good accuracy, in 

order to get a handy approximation, valid for  (see Section 4). 

 The function  has just one extreme value, a maximum that is  where adopts the 

value  

Deduction of a handy accurate invertible and integrable expression for Dawson’s function 

With the purpose of obtaining an approximated expression for Dawson’s function, an algorithm will be 

followed by dividing the domain of into two. In the first subinterval, Dawson’s integral will be modeled 

by using the PSEM method, while in the second one, it will be shown that employing the first two terms of 

(11) in order to obtain a good approximation is sufficient. 
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To begin, equation (10) is used to obtain the following expression for Dawson’s integral , 

valid for values near the origin: 

𝑝(𝑥) = 𝑥 − K
Y
𝑥Y + Z

E[
𝑥[ − ^

E9[
𝑥a + Eb

cZ[
𝑥c                                                             

(12) 

In accordance with the PSEM algorithm (Vazquez-Leal & Sarmiento-Reyes, 2015), it is proposed 

to model the first part of  near the origin by means of the following rational function (see (5)): 

𝑟(𝑥) = eID?eFDF

E?fID?fFDF?f]D]
                                                                           

(13) 

where  and  are parameters to be adequately determined later on. 

The following expression shows some terms of the Taylor series of (13): 

𝑡(𝑥) = 𝑏E𝑥 + (𝑏K − 𝑏E𝑎E)𝑥K + [−𝑏E𝑎K + (−𝑏K + 𝑏E𝑎E)𝑎E]𝑥Y+. ..                                          

(14) 

Next, a system of algebraic equations will be deduced to calculate the values of the parameters 

mentioned above through the following criteria. 

In order to ensure that   correctly represents the behavior of for values near the origin, 

the Taylor series (12) and (14) will be matched by equating the coefficients of powers  and . Since 

there are five parameters to be determined, then three additional equations are necessary, chosen so 

that the proposed rational function describes points of  farther from the origin. 

With that purpose, the following points of Dawson’s function are proposed: 

,   and (it is noted that  corresponds to 

the point where  reaches its extreme value (see section 3)). 

The algebraic system of equations emanating from the above considerations is the following: 

𝑏E = 1, 

𝑏K − 𝑏E𝑎E = 0, 

0.923𝑏E + 0.851929𝑏K
1 + 0.923𝑎E + 0.851929𝑎K + 0.786330467𝑎Y

= 0.5410435224, 

1.5𝑏E + 2.25𝑏K
1 + 1.5𝑎E + 2.25𝑎K + 3.375𝑎Y

= 0.4282490711, 

K.[eI?b.K[eF
E?K.[fI?b.K[fF?E[.bK[f]

= 0.2230837222                                              (15) 

The numerical solution for the above system is 

( )F x

( )F x

1,b 2 ,b 1,a 2 ,a 3a

( )r x ( )F x
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𝑏E = 1,			𝑏K = −0.03445671284, 		𝑎E = −0.03445671284, 𝑎K = 0.3984215440	 

and	𝑎Y = 0.4375814082                                        (16) 

After substituting (16) into (13), it is obtained 

𝑟(𝑥) = DN9.9YZZ[baEK^ZDF

EN9.9YZZ[baEK^ZD?9.Yc^ZKE[ZZ9DF?9.ZYa[^EZ9^KD]
.                                               (17) 

As it can be seen afterwards, (17) describes  adequately for values of , from the origin to

. 

For  greater than this value, it is proposed to model  with the first two terms of expansion 

(11), that is, 

𝐴(𝑥) = E
KD
+ E

ZD]
                                                                          (18) 

It will be seen that, despite the character asymptotic of (18), describes with good precision 

Dawson’s function in the mentioned interval (figure 1 and figure 2). It is emphasized that although a 

better approximation for  may be obtained, assuming a rational function of greater order (see (13)) 

and increasing the accuracy of   keeping more terms of (11), the goal is to obtain an accurate 

expression, as simple as possible, for Dawson’s function, in such a way that it is invertible and 

integrable. As a matter of fact, as an application, this last characteristic of this approximation for   

will be employed in a case study emanating from physics. On the other hand, in order to build a 

continuous function from (17) and (18) it is necessary to find the point of junction of the previous 

functions. The fact that the absolute values of relative errors of (17) and (18) have to be the same in the 

point of intersection of  and , i.e., is proposed as criteria: 

vT(D)Nw(D)
T(D)

v = vT(D)Nx(D)
T(D)

v.                                                                     (19) 

 

Figure	1.	Plots	of	proposed	approximation	(22)	and	numerical	Dawson's	function.	
Source:	Author’s	own	elaboration.	
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Figure	2.	Plot	of	relative	error	committed	employing	(22).	

Source:	Author’s	own	elaboration.	
	

After applying condition (19), the value already mentioned is obtained: 

𝑥< = 2.678915610                                                                              (20) 

𝐹(𝑥) = y
DN9.9YZZ[baEK^ZDF

EN9.9YZZ[baEK^ZD?9.Yc^ZKE[ZZ9DF?9.ZYa[^EZ9^KD]
,			0 ≤ 𝑥 ≤ 2.678915610

E
KD
+ E

ZD]
,			𝑥 > 2.678915610.

|             (21) 

In a sequence, by using the unit step function (Zill, 2012), it is possible to express (21) as  

𝐹(𝑥) = DN9.9YZZ[baEK^ZDF

EN9.9YZZ[baEK^ZD?9.Yc^ZKE[ZZ9DF?9.ZYa[^EZ9^KD]
(1 − 𝛿(𝑥 − 2.678915610)) + +~ E

KD
+ E

ZD]
� 𝛿(𝑥 −

2.678915610)                                                                           (22) 

(figure 1). 

Next, it is noted that (21) is indeed invertible. 

For the interval , is given by (18), in such a way that after some algebraic 

steps, (18) is rewritten as 

𝑥Y − E
Kx
𝑥K − E

Zx
= 0                                                                               (23) 

where, for the sake of simplicity, the dependence of  from  is omitted. 

 In Appendix A the basic aspects of cubic algebraic equations are summarized. 

 Next,   and  are calculated (see equations (A1) and (A2)) so that 

𝑄 =
−1
36𝐹K 

𝑅 =
1
8𝐹

+
1

216𝐹Y 

d

2.678915610x > ( )F x

x ( )A x

,Q ,R D
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𝐷 = 𝑄Y + 𝑅K = E
bZTF

+ E
^bZT�

> 0                                                                        (24) 

Since discriminant  for the whole interval , it is inferred that (23) has just 

one real root which, in accordance with the first equation of (A3), is given by 

𝑥 = � E
^T
+ E

KEbT]
+ � E

bZTF
+ E

^bZT�

]
+ � E

^T
+ E

KEbT]
− � E

bZTF
+ E

^bZT�

]
+ E

bT
                                                  (25) 

after using  instead of . 

On the other hand, for the interval  is given by (17):
 

𝑟(𝑥) =
𝑥 − 0.03445671284𝑥K

1 − 0.03445671284𝑥 + 0.3984215440𝑥K + 0.4375814082𝑥Y
 

After some algebraic steps, (17) is rewritten in the form of the cubic equation 

𝑥Y + Te?f
T�

𝑥K − Tf?E
T�

𝑥 + E
�
= 0                                                        (26) 

where  has been employed instead of  and defined 

𝑎 = 0.03445671284,				𝑏 = 0.3984215440,				𝑐 = 0.4375814082                                     (27) 

The corresponding values for  and  are given by (see A [2]) 

𝑄 = N(Tx?E)
YT�

− (T�?x)F

cTF�F
                                                                     (28) 

𝑅 = N(T�?x)(Tx?E)
bTF�F

− E
K�
− (T�?x)]

KaT]�]
                                               (29) 

On the other hand, in order to obtain , it is just necessary to substitute (28) and (29) into 

𝐷 = 𝑄Y + 𝑅K                                                                                      (30) 

nevertheless, a sort of cumbersome expression to  would be obtained. 

A better methodology is to graph the right-hand side of (30) (see figure 3). From the mentioned 

figure, it is concluded that, in the interval of interest  and from the theory for 

solving cubic equations, (26) provides three real roots (see Appendix A). 

0,D > 2.678915610x >

( )F x ( )A x
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Figure	3.	Plot	of	right-hand	side	of	(30).	
Source:	Author’s	own	elaboration.	

	

Next, from the three above-mentioned roots,  the last expression of (A4) is provided as a 

solution for (26), because this supplies, with good precision, the values of , starting from the values 

of Dawson’s function : 

𝑥 = �−2�−𝑄cos �E
Y
arccos �− �

�N�]
� + Z�

Y
�� − K.K^[K^c9Zc(9.Yc^ZKE[ZZ9T?9.9YZZ[baEK^Z)

YT
               (31) 

for the interval    

Finally, it is noted that the approximation proposed to Dawson’s integral (21) is also integrable, 

in terms of elementary functions, that is to say, 

∫D9 𝐹(𝑥′)𝑑𝑥′ =

⎩
⎪
⎨

⎪
⎧−0.7321079151ln|𝑥 + 1.724561802| + (0.3266821832ln((𝑥 − 0.4070267054)

K + 1.159471131)
−0.3847015718arctan(1.076787412, 𝑥 − 0.4070267054) + 0.3847015718arctan(−1.076787412,
𝑥 − 0.4070267054) + 1.79364; 						0 ≤ 𝑥 ≤ 2.678915610

0.9701971726 + �E
K
ln ~ D

K.ba^cE[bE9
� + E

^
~0.1393421247 − E

DF
�� ; 						𝑥 > 2.678915610. ⎭

⎪
⎬

⎪
⎫

    (32)

 

(for real arguments , , the two-argument function  computes the principal value 

of the argument of the complex number , so  Equation (32) was obtained with 

the assistance of  Maple 17 built-in function routine for integration. 

 In terms of step function, it is possible to rewrite (32) as 

¢
D

9
𝐹(𝑥£)𝑑𝑥£ = ¤

−0.7321079151ln|𝑥 + 1.724561802| + (0.3266821832ln((𝑥 − 0.4070267054)K + 1.159471131)
−0.3847015718arctan(1.076787412, 𝑥 − 0.4070267054) + 0.3847015718arctan	(−1.076787412,
𝑥 − 0.4070267054) + 1.79364

¥ 
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¦1 − 𝛿(𝑥 − 2.678915610)§ + ¨0.9701971726 + �E
K
ln � D

K.ba^cE[bE9
+ E

^
~0.1393421247 − E

DF
���© 𝛿(𝑥 −

2.678915610)             (33)

 

where the value 0.97010971726 expressed in the interval x>2.678915610 represents the value of 

∫K.ba^cE[bE99 𝐹(𝑥)𝑑𝑥 (see below). 

In order to prove the accuracy of (33), regarding the relevant contribution that comes from

, the area will be evaluated: 

∫K.ba^cE[bE99 𝐹(𝑥)𝑑𝑥                                                                                  (34) 

and later it is compared with the numerical value of (34) for Dawson’s function. As a matter of 

fact, the accuracy of the proposed approximate solution (33) is revealed. 

The numerical value of (34) turns out to be 0.9635924825, while the value obtained after 

employing the proposed analytical approximation (33) is 0.9701971726. What is more, figure 4 shows 

the plot of the area function  for the interval  of (33), and figure 5 shows that 

the biggest absolute error committed is about , proving the accuracy of this work’s 

approximation. 

 

Figure	4.	Plot	for	the	area	function	 of	(33)	in	the	interval	 	
Source:	Authors’	own	elaboration.	
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Figure	5.	Plot	of	absolute	error	committed	by	using	(32)	or	(33)	in	the	interval	 	

Source:	Authors’	own	elaboration.	

 Application to a nonclassical Stefan problem in physics 

A one-phase Stefan problem for a semi-infinite material is a free boundary problem for the heat equation, 

which aims to find the temperature distribution for the case of melting and solid phases, as well as to 

determine the evolution of the free boundary. 

Following Briozzo & Tarzia, 2010, it is briefly considered the nonclassical heat conduction 

problem for a semi-infinite material given by the conditions 

	𝜌𝑐𝑢P − 𝑘𝑢DD =
−𝛾𝜆9𝑢D(0, 𝑡)

√𝑡
, 0 ≤ 𝑥 < 𝑠(𝑡), 𝑡 > 0 

	𝑢(0, 𝑡) = 𝑓, 𝑡 > 0 

	𝑢(𝑠(𝑡), 𝑡) = 0, 𝑡 > 0 

	𝑘𝑢D(𝑠(𝑡), 𝑡) = −𝜌𝑙�̇�(𝑡), 𝑡 > 0 

𝑠(0) = 0                       

(35) 

where  is the temperature, is a free boundary,  and  are certain positive 

thermal coefficients, the boundary temperature is denoted by , and is a constant. With the 

purpose of getting an explicit solution of a similarity type, the following substitution is proposed 

(Briozzo & Tarzia, 2010): 

Φ(𝜂) = 𝑢(𝑥, 𝑡), 𝜂 = D
Kf√P

                                                                                  (36) 

0 2.678915610.x£ £

( , )u u x t= ( )x s t= ,k ,r ,c ,l g
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where is the diffusion coefficient of the phase change material. 

After using (36), it can be noted that (35) adopts the form 

Φ′′(𝜂) + 2𝜂Φ′(𝜂) = 2𝜆Φ′(0),0 < 𝜂 < 𝜂9                                                          (37)
 

Φ(0) = 𝑓                                                                                (38) 

Φ(𝜂9) = 0                                                                             (39) 

Φ′(𝜂9) = − K´
�
𝜂9                                                                              (40) 

where the dimensionless parameter 

𝜆 = µ¶>
·�f

> 0                                                                               (41) 

has been defined, and must be of the form 

𝑠(𝑡) = 2𝑎𝜂9√𝑡.                                                                         (42) 

The value of the parameter is determined later. 

From Briozzo & Tarzia (2010), the solution of (37) that satisfies the conditions (38) and (39) is 

given by 

Φ(𝜂) = 𝑓 ¸1 − ¹(º,¶)
¹(º>,¶)

» , 0 < 𝜂 < 𝜂9                  (43) 

where the following is defined: 

𝐸(𝑥, 𝜆) = 𝑒𝑟𝑓(𝑥) + Z¶
√�
∫D9 𝐹(𝑟)𝑑𝑟                                                           (44) 

In (44), denotes the error function 

𝑒𝑟𝑓(𝑥) = K
√�
∫D9 exp(−𝑧K)𝑑𝑧                                                              (45) 

and the Dawson’s integral (see (8)). 

By substituting (43) and (44) into (40), it is obtained the following equation for the unknown 

parameter  (Briozzo & Tarzia, 2010): 

ÁPÂ
√�
[exp(−𝜂9K) + 2𝜆𝐹(𝜂9)] = 𝜂9 ¸𝑒𝑟𝑓(𝜂9) +

Z¶
√�
∫º>9 𝐹(𝑧)𝑑𝑧»                                               (46) 

where the Stefan’s number given by 𝑆𝑡𝑒 = 𝑓𝑐/𝑙 > 0. has been introduced. 

It is noted that one of the main contributions of this work is to provide an analytical 

approximation for the integral of Dawson's function (see (33)) with good precision and, for the same 

2a k cr=

( )s t

0h

( )erf x

( )F x

0h
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reason, this result may be employed into (44). On the other hand, Vazquez-Leal, Castañeda-Sheissa, 

Filobello-Niño, Sarmiento-Reyes & Sanchez-Orea (2012) provided the following handy accurate 

analytical approximation to the error function  (see discussion): 

𝑒𝑟𝑓(𝑥) = tanh �Zc9aD
ZZb

− ~Eaa[
Y
� arctan ~YZD

EcE
�� , −∞ < 𝑥 < ∞                                   (47)

 

Thus, unlike Briozzo & Tarzia (2010), who just provided a symbolic solution to problems (37)-

(40), the authors in this study are in a position to propose an analytical solution for the same problem 

with good precision by substituting (33) and (47) into (43). 

Finally, approximations (22), (33) and (47) may be substituted into (46) in order to obtain a 

numerical approximate solution for  and, with this result, the problem is concluded. 

For sake of simplicity, the following values of Stefan’s number  and  are proposed as a 

case study. After performing the numerical solution of the above-mentioned equation, the value 

 is obtained. 

Discussion 
This article successfully accomplished the purpose originally proposed: to get a handy analytical 

approximate solution for the Dawson’s integral, which, as seen before, describes for example the solution 

of heat conduction problems (Briozzo & Tarzia, 2010; Khan, 1990). Although the proposed approximation 

has an acceptable precision, it introduces two advantageous characteristics, which are not presented in 

other approximations of Dawson’s function from the literature: being invertible and integrable in terms of 

elementary functions. To achieve this goal, a piece wise–like approximation was proposed, for which the 

interval of definition  is divided into two subintervals:  and  

For the case of  it was required the application of the PSEM method (Vazquez-Leal 

& Sarmiento-Reyes, 2015) in order to adequately model Dawson’s function in this interval. Such as it 

was explained in Section 4, it was proposed to model Dawson’s function near to the origin by means 

of the rational function (13), provided with five parameters to be determined. Next, a system of 

algebraic equations was deduced to calculate the above mentioned parameters, first, by equating the 

coefficients of powers  and  from Taylor series of the proposed solution (14) and the expansion for 

Dawson’s integral (12), valid for values near the origin. In order to obtain three additional equations, 

the points denominated as , , and into (13) were substituted. After solving the resulting system of 

equations (15), it was obtained (17). It is emphasized that the procedure mentioned ensures that (44) 

describes adequately and with good precision Dawson's function for values from the origin to 

2.678915610. With the purpose to model Dawson’s function for the interval , the first two 

terms of its asymptotic expansion (11) were kept (see (18)). It is remarkable the accuracy with which 

the above mentioned truncated asymptotic expression of only two terms (18) describes Dawson’s 

integral, starting from relatively small values of x, in absolute value. Although a better approximation 

for  may be obtained, regarding a rational function of a greater order than five and increasing the 

accuracy for values  , considering even more terms for the truncated series (18), the goal 

of this research was to obtain an approximation, as simple as can be, to get an invertible and integrable 

Dawson’s analytical approximation. 

( )erf x
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Thus, from the above discussion it was natural the proposal of a piece-wise approximation of 

the form (22), where the step function in order to get a compact expression for  was employed. 

Although from figure 1 it is clear the accuracy of the proposed approximation (22), figure 2 shows that 

the biggest relative error committed employing (22) is about 2.5%, from which it can be inferred that 

the proposal in this research provides a good precision. As a matter of fact, the possibility of providing 

an invertible and integrable Dawson’s analytical approximation is indeed complicated to obtain, and 

it was noted that (22) indeed turns out to have both characteristics. 

For the interval , is given by (18). After carrying out some algebraic steps, it 

was possible to express (18) in terms of cubic equation (23), and from Appendix A, it was concluded 

that (23) just owns one real root, because and it is given by (25). On the other hand, for 

, (17) is rewritten in the form (26). After taking into account the results of Appendix A, 

it was concluded that (26) provides three real roots (because  is negative for all values of  in the 

interval), and the root that better describes the values of , in terms of values of the Dawson’s function, 

is given by (31). It was noted that instead of calculating the value of  directly, the novel procedure of 

plotting the right hand side of (30) was chosen (figure 3) with the result mentioned above. Once again, 

it is emphasized that handiness of (17) and (18) allowed to get an invertible expression for Dawson’s 

integral. 

Next, it is noted that our approximation to Dawson’s integral (21) is also integrable, in terms of 

elementary functions through the remarkable results (32) or (33). In order to prove the accuracy of the 

relevant contribution of (33) that comes from the interval , it was considered to 

evaluate the area integral (34) employing (33), and the resulting value was compared with the 

numerical value of (34). The numerical value of (34) turned out to be 0.9635924825, while the value 

obtained after employing the proposed analytical approximation (33) was 0.9701971726. In a sequence, 

figure 5 shows that the biggest absolute error committed is about , from which it is deduced the 

accuracy of approximation proposed here. 

Finally, in order to show the usefulness of the results presented in this work, the case of a one-

phase Stefan problem for a semi-infinite material was introduced. These problems involve the heat 

equation, which aims to find the temperature distribution for the case of melting and solid phases, as 

well as to determine the evolution of the free boundary (Briozzo & Tarzia, 2010). 

The procedure proposed by Briozzo & Tarzia (2010) express the original non-classical heat 

conduction problem for a semi-infinite material (35), in terms of the ordinary differential equation 

(37), which obeys the conditions (38)-(40), through substitutions (36). Following Briozzo & Tarzia 

(2010), the solution of (37) that satisfies the conditions (38) and (39) is given by (43). It is remarkable 

that (43) is expressed in terms of integrals of Dawson's function and error function. It is noted that the 

integral of the Dawson's function can be expressed in terms of the generalized hypergeometric 

function  (Murley & Saad, 2008 ), but as opposed to the proposed solution (32) (or (33)), 

which is expressed just in terms of elementary functions (and for the same reason it turned out to be 

useful for practical applications), the generalized hypergeometric function is not an elementary 

concept. In fact, it requires a special mathematical background to be employed, because  is 

expressed in terms of a special powers series in which the ratio of successive terms is a rational 

function of the summation index (Murley & Saad, 2008). Instead, the accuracy of (33) was proved, 

regarding the relevant contribution which comes from , by evaluating the area (34) 
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after employing (32), and comparing this value with the corresponding (34), obtained by numerical 

methods. 

As it was already mentioned, the value obtained after employing the proposed analytical 

approximation (33) was 0.9701971726, and the corresponding absolute error committed by using (32) 

was only  (figure 5). Thus, it is concluded that our proposed approximation has a good precision 

and it is expressed in terms of elementary functions. 

On the other hand, Vazquez-Leal et al. (2012) provided a handy accurate analytical approximate 

solution for the error function  (47). The mentioned article compares different approximations 

for the error function presented in the literature. From them, (47) turned out to have a relative error 

lower than , and for the cumulative error function, the maximum committed error for region 

is lower than . Therefore, (47) has a high level of accuracy, comparable to other 

approximations found in the literature; nevertheless, the proposed approximation has such 

mathematical simplicity that allows to be used on practical engineering applications and sciences 

with good precision. Thus, unlike Briozzo & Tarzia (2010) who just provides a symbolic solution to 

problem (37)-(40), an analytical approximate solution was provided for the same problem and, from 

the above mentioned, with good precision by using (33) and (47) approximations into (43). 

Finally, with the purpose of completing the solution to the proposed problem, approximations 

(22), (33), and (47) were substituted into (46) in order to obtain a numerical approximate solution for 

. As a case study, it was proposed the following values of Stefan’s number:   and . The 

numerical solution of the above-mentioned equation provided the value  

Next, a table is provided with the relevant contributions found in this work. 

Proposed approximation to Dawson’s Function: 

𝐹(𝑥) = Æ

𝑥 − 0.03445671284𝑥K

1 − 0.03445671284𝑥 + 0.3984215440𝑥K + 0.4375814082𝑥Y
,			0 ≤ 𝑥 ≤ 2.678915610

1
2𝑥

+
1
4𝑥Y

, 𝑥 > 2.678915610.
Ç

 
Proposed approximation to Inverse Dawson’s Function: 

𝑥 =

⎩
⎪
⎪
⎪
⎨
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⎪
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4𝜋
3
�¥ −

2.285289049(0.3984215440𝐹 + 0.03445671284)
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0 < 𝑥 ≤ 2.678915610

Ë 1
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+
1

216𝐹Y
+ � 1
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Proposed Integral for Dawson’s Function in Terms of Elementary Functions: 
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¢
D

9
𝐹(𝑥′)𝑑𝑥′ =

⎩
⎪
⎨

⎪
⎧−0.7321079151ln|𝑥 + 1.724561802| + (0.3266821832ln((𝑥 − 0.4070267054)

K + 1.159471131)
−0.3847015718arctan(1.076787412, 𝑥 − 0.4070267054) + 0.3847015718arctan(−1.076787412,
𝑥 − 0.4070267054) + 1.79364; 			0 ≤ 𝑥 ≤ 2.678915610

0.9701971726 + �
1
2 ln

~
𝑥

2.678915610
� +

1
8 �0.1393421247 −

1
𝑥K�� ; 		𝑥 > 2.678915610.

⎭
⎪
⎬

⎪
⎫
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Conclusions 
This work proposed a novel analytical approximation for Dawson’s function in the form of a piecewise type 

function (22). Given the different nature of  for values of  close to the origin and far from it, it is 

natural to propose a solution by sections. Nevertheless, it is emphasized that although a better 

approximation for Dawson’s function may be obtained, assuming a rational function of greater order (see 

(13)) and increasing the accuracy of  (see (18)), keeping more terms of series (11), the goal of this study 

was to obtain an accurate expression as simple as possible, in order to get an invertible and integrable  

function with good precision. To achieve this goal, the domain of this study was divided into two intervals: 

 and  

With the purpose of modeling  in , the PSEM method was used (Vazquez-

Leal & Sarmiento-Reyes, 2015), whose methodology required to employ three known points of 

Dawson’s integral in order to propose a rational approximation provided with five parameters, which 

were successfully determined. Unlike the above mentioned, for it was found that it was 

possible to model Dawson’s function by keeping the first two terms of the asymptotic expansion (11). 

In fact, the approximation in this work has just a maximum relative error of 2.5% from which it was 

deduced that the proposal here is adequate for the purpose of this work. Given the mathematical 

simplicity of the expressions mentioned, it was obtained the invertible and integrable Dawson’s 

analytical approximations (21) or (22). Finally, it was shown the usefulness of integral approximation 

(32) (or (33)) in the interesting case study of a nonclassical heat conduction problem for a semi-infinite 

material. Unlike the symbolic solution presented by Briozzo & Tarzia (2010), an analytical approximate 

solution with good precision was presented. It was employed in this work the analytical 

approximations (22) and (33) for Dawson’s function and (47) for error function , in order to 

provide an analytical approximation with good accuracy for the important physics problem 

mentioned above. This suggests that future research should aim to find accurate approximations to 

other special functions of mathematical physics. 

Appendix A 

Some rudiments of Cubic Algebraic Equations  
Next, some rudiments of cubic algebraic equations, relevant for this work, are summarized. 

Assuming a cubic equation in the form (Kurosh, 1968) 

𝑥Y + 𝑎E𝑥K + 𝑎K𝑥 + 𝑎Y = 0                                                              (A1) 

then, after calculating the quantities: 

( )F x x

( )A x

( )F x

2.678915[0, 610] 2.678915( 610, ).¥

( )F x 2.678915[0, 610]

2.678915610x >

( )erf x
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  𝑄 = YfFNfIF

c
, 𝑅 = cfIfFNKaf]NKfI]

[Z
, 		𝑆E = �𝑅 + �𝑄Y + 𝑅K

]
, and			𝑆K = �𝑅 − �𝑄Y + 𝑅K

]
               (A2) 

it is possible to express the roots of (A1) in the following terms: 

𝑥E = 𝑆E + 𝑆K −
𝑎E
3

 

𝑥K = −
𝑆E + 𝑆K
2

−
𝑎E
3
+
𝑖√3(𝑆E − 𝑆K)

2
 

𝑥Y = − ÁI?ÁF
K

− fI
Y
− <√Y(ÁINÁF)

K
                    (A3) 

From the discriminant  , the following cases can be distinguished: 

1. - one root is real and two are complex if ; 

2. – all real roots, and at least two equals if ; 

3. - all real roots, and different if .  

In the case   it is possible to rewrite (A3) in the following form: 

𝑥E = −2�−𝑄cos �
𝜃
3
� −

𝑎E
3

 

𝑥K = −2�−𝑄cos �
𝜃 + 2𝜋
3

� −
𝑎E
3

 

𝑥Y = −2�−𝑄cos ~Î?Z�
Y
� − fI

Y
                                                                                                       (A4) 

where the following has been defined: 

cos𝜃 = −
𝑅

�−𝑄Y
.
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