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

            
              
               
            
                  
            
               
        

   
   



            
            
              
            
                
            
           
            
     



Shape approximation has received a lot of research attention because of its multiple applications. Some exam-
ples of these applications are: its use to optimize machine elements, the simplification of CAD models and
the approximation of trajectory data. Main approaches to solve the shape approximation problem are the
approximation of shapes using polygonal segments and the use of splines for the same purpose. In particular,
we are interested in polygonal approximation of digital curves because we intend to synthesize the trajectory
of a 2D Cartesian robot using only Advance and Rotate primitives along an arbitrary 2D curve.

 

Polygonal approximation of digital curves has been addressed by many researchers using different methods
that could be categorized into three main classes [1][2]: i) local optimization algorithms , ii) global optimization
algorithms and iii) intelligent optimization algorithms.

 
   
  

    
  

Local optimization algorithms include approaches using sequential meth-
ods, split and merge techniques and dominant point detection methods. Global
optimization techniques use dynamic programming methods. Both categories
of methods present several drawbacks in the general case. Intelligent optimiza-
tion algorithms, such as Genetic Algorithm (GA), Particle Swarm Optimization
(PSO) and Ant Colony Optimization (ACO), has been gained attention as alter-
natives to solve the polygonal approximation problem because they can search
efficiently through complex search spaces such as the ones generated by the
approximation of complex digital curves.

∗                  

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Several approaches using Evolutionary Algorithms
(EA) can be found in the literature. The main variants
of the EA for polygonal approximation of digital curves
found in these methods include: 1) Modifications to
the genetic operators of the EA. For example, Tsai
[3] modifies the selection process to favor individuals
according to its probability of being a vertex of the op-
timal shape. 2) Hybridization of several evolutionary
techniques. We can find several combinations of GA,
PSO and ACO in the literature. Yin shows in [4] that
an hybrid technique of PSO and AG over performs
methods using a single evolutionary approach. 3) Use
of multi-objective algorithms, as those presented by
Locteau   [5] and Ho   [6].

Different approaches optimize different criteria.
For example, Traver   [7] propose to optimize
the length of the segments, the number of dominant
points and the error approximation. Tsai [3] consid-
ers as the optimization criteria the orthogonal distance
from the points in the shape encoded by the individual
to the points in the digital curve to be approximated.
Guanghui and Chuanbo [8] use a fitness functions
composed of two error terms: RISE (Revised Internal
Square Error) and BISE (Balance Internal Square Er-
ror). The optimization criteria considered for these
terms are local sum of the square error, the number
of segments and the length of the segments.

For all the evolutionary optimization approaches
reviewed here, the individual representing the ap-
proximated shape is encoded using a string of N bits,
where N is the number of total points in the reference
figure. Each bit is encoded as a “1” if the correspond-
ing point is chosen as a vertex and a “0" otherwise.
That is, a notion of vertex order is given as input to
the algorithms.

 

We present an evolutionary programming approach
(EP) [9] to solve the polygonal approximation of digital
curves. The proposed method works both on open
and closed digital curves without needing any a pri-
ori notion of vertex ordering. The approach proposed
here can also estimate the number of vertices to ap-
proximate the reference curve. We use as optimization
criteria six factors explained later to approximate a
broader extent of digital curves.



 

The algorithm receives a contour binary image as in-
put. We consider that boundary is formed by NE points

(pixels) whose coordinates (x, y) are stored in a vector
V. This method is proposed by Ayala et al. in [10]
and [11]. In this form, it is not necessary to specify
the order of the points of the reference figure. The
objective of the algorithm is to find a set of NP points
belonging to V that can be used as vertices, which
linked consecutively result in the best approximation
to the reference shape.

We have used EP to find the set of vertices that best
approximate the reference figure, including the esti-
mation of the optimal number of them. The choice of
EP was justified because its simplicity to handle vari-
able length chromosomes [12]. In EP, we apply only
mutation and replacement genetic operators, avoiding
the need of crossover operations.

As pointed out by [9] [12], the main steps of EP are
shown in the flowchart in figure 1.

  .    

As in other EAs, we need to define the individual
representation, the fitness function, the mutation op-
erator an a replacement (selection) mechanism. In the
following sections, we describe how these elements of
our approach were implemented.

 

Each individual I in the EP population is defined as a
NP− tuple of integer indexes ik ∈ 1, ...,NE, with k ∈ 1, ...,NP.
A given index k corresponds to a point pk(xk, yk) stored
in V.
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Since each figure can be approximated with a dif-
ferent number of vertices NV , the size of the individual
(NI) is variable. A maximum (Nmax) and a minimum
(Nmin) number of points are defined, so NV ∈ Nmin, ...,Nmax.
We have set Nmin = 3 and Nmax = 20. If we use NB bits to
represent a segment, the size of the individual is then
NI = NV ∗ NB bits.

The encoded individual represents an ordered se-
quence of straight line segments corresponding to a
feasible solution of the digital curve approximation
problem. The encoded solution uses the correspond-
ing points in V as vertices of the piecewise linear ap-
proximation to the digital curve. The position of each
vertex in the individual phenotype encodes the order
of the linking of the line segments in the solution en-
coded by the individual.

 

Mutation serves in EP to evolve the population by gen-
erating new individuals from those belonging to the
current population. Each individual in the EP popu-
lation generates an offspring by using one of the five
mutation procedures provided in our implementation.
The proposed mutation operators Mi i ∈ 1, ...., 5 are de-
scribed as follows:

  n  M1 The new individual
conserves the bit length of its parent but n bits are
mutated. The bits to be mutated are chosen ran-
domly.

      M2 This mutation oper-
ator adds a randomly chosen segment to the end of
the bit string of its parent. So the bit string length
is augmented by NB bits

      M3 The offspring is
generated by deleting the ending point of the par-
ent individual. The bit string length of the offspring
is reduced NB bits with respect to that of the par-
ent.

   M4 The mutated individual is a
modified copy of the parent where one of the seg-
ments of the parent is broken into two separated
segments that are joined at the inserted point. Bit
string length of the offspring is NB longer than that
of the parent.

   M5 This mutation operator
removes a point in a random position of the seg-
ment chain of the parent individual. After that, it
links previous point in the chain to the following
point into one segment. Consequently the mutated
individual bit string length is reduced by NB bits.

In order to choose which mutation operator to ap-
ply for each individual, we use a roulette-wheel ap-
proach. That is, we assign to each mutation operator
Mi an a priori probability Pi representing our exper-
tise for solving the polygonal approximation problem.
According to this, we have assigned to M1 the largest
probability of the mutation operator because it is the
operator that helps the most to conserve diversity in
the population. The probabilities for all the mutation
operators are presented in table 1.

  .

 

  Pi

M1 0.32

M2 0.17

M3 0.17

M4 0.17

M5 0.17

 

The fitness is composed by six measures which try
to ensure that two main characteristics are exhibited
by the individuals: i) the existence of points of the
synthesized polygonal curve in the figure being ap-
proximated; and ii) the coverage of the entire digital
curve through the synthesized polygonal approxima-
tion. These measures are described below:

1.      F1 For
each encoded solution, we consider the sum of
distances from the line segments S i with i ∈
2, ...,NV − 1, composing it, to the actual curve
points in the image. In order to improve compu-
tation speed, we consider only a sample fraction
of the points for each line segment.

2.   F2 The non-collinea-
rity factor let us to prevent the use of collinear
straight line segments as consecutive segments
of the polygonal approximation. We compute the
angle between consecutive segments and we pe-
nalize the individual if this angle is near to 0, π
and 2π radians up to an experimentally deter-
mined threshold U1. In our experiments we have
used U1 = π/18.

3.     F3 The vertex
overcrowding factor is used to penalize individ-
uals that exhibit a large number of vertices in
small regions. The radius of these regions is set
to a threshold U2 = NE/(NP)2.

4.    F4 We use this factor
to favor the coverage of the bounding box area
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of the curve being approximated by the encoded
solution.

5.    F5 This factor fa-
vors the encoded solution that exhibit a length
close to the length of the curve being approxi-
mated.

6.   F6 The recall factor F6(I)
measures the number of points in the reference
curve that are present in the encoded solution or
in a given tolerance radius T . We have set T = 2.

The overall fitness function is then:

F = (1 + k6F6)(k1F1 + k2F2 + k3F3 + k5F5) + k4F4 + k7F6 (1)

where ki ∈ 1, ...., 7 were calculated automatically by us-
ing a Genetic Algorithm on a parameter tuning test.
A circle image was chosen as the reference figure be-
cause it was a base case along the design process.
The values of these parameters are presented in table
2.

  .

     

   
k1 2.00 k5 4.35

k2 47.31 k6 36.46

k3 20.38 k7 3.91

k4 0.24

 

After the mutation step, the EP population was dou-
bled in size. We have ranked the entire population
using as criteria its fitness score. The best half was
conserved and the worst half was discarded. In this
way, the EA exhibited a steady state policy, and as a
worst case, the current best solution is kept. The en-
tire EP process is iterated until the ending condition
is fulfilled.

 

The figures of our interest can be described with the
use of two main qualitative features (see figure 2): its
openess and its straightness . By openess, we mean
the property of the starting point and the ending point
being far from each other. So, in figure 2, we can say
that curves 1, 4 and 7 exhibit the lower openess be-
cause they are closed and curves 3, 6 and 9 presents a
larger openess property. We consider as straightness,
the property of a curve of being composed exclusively
of straight line segments. In figure 2, curves 1, 2 and

3 exhibit the largest straightness value whilst shapes
7, 8 and 9 are only composed by smooth curves. Our
shape dataset is composed of 9 curves that cover a
range of the qualitative properties.

  .       

 

In order to perform the tests with the aforementioned
dataset, it was necessary to determine the number
of individuals (Nind) and the number of generations
(Ngen) to be used in the algorithm implementation. For
this purpose, we have tuned the algorithm by using
as input figure exhibiting a mid range value for both
properties of interest.

The reference curve for the tuning experiments is
shown in figure 3. As we can observe there, the curve
us composed of a mixture of curved segments and
straight segments. The configuration cases consid-
ered in this tuning test were all the combinations in
Nind × Ngen = 200, 400, 600 × 200, 400, 600

  .

 
Nind Ngen 
200 200 28774.45

400 23907.81

600 22500.44

400 200 1710.01

400 1573.54

600 1262.93

600 200 427.47

400 190.18

600 195.56
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  .       

The results of the optimal fitness for these tun-
ing test is shown in table 3. The optimal configura-
tion from the cases under study was achieved with
Nind = 600 and Ngen = 400.



Quantitative results for the performance test on the
curves in figure 2 are shown in table 4. Average fit-
ness (F) and average number of points (NP) results for
each digital curve are presented in columns two and
three, respectively. Information about the best cases
is also presented, fitness values (FBest) and average dis-
tance error (EBest) are shown in the last two columns.
It is important to point out that average distance er-
ror is in pixels, and it was calculated on the resulting
figure by using Bressenham’s algorithm.

  .

 
 F NV FBest EBest

1 104.41 8.48 50.72 0.33
2 113.48 9.28 42.24 0.26
3 69.33 8.69 6.16 0.55
4 148.42 12.66 108.67 0.56
5 221.92 12.82 50.30 0.30
6 351.72 11.82 121.40 0.60
7 142.11 13.56 104.01 0.53
8 214.10 12.38 82.26 0.65
9 40.76 7.91 14.02 0.82

In figure 4, we show qualitative results of the best
approximations. The optimal number of points found
for each figure is indicated in a box.

1

NV = 8

2

NV = 8

3

NV = 9
4

NV = 13

5

NV = 13

6

NV = 9
7

NV = 14

8

NV = 11

9

NV = 8

  .          NV   
 

With respect to the number of points in the result-
ing polygonal approximations, it is possible to say that
figures with a high number of points are those which
contain large curved zones, for example, curves 4, 5,
7 and 8. If there is not a defined number of vertices
in the reference figure, a better approximation can be
obtained by increasing the number of points on it. In
curves where there is a defined number of vertices we
could expect to obtain the same number but it does
not happen. That can be explained by the individ-
ual fitness evaluation process, where a discretization
process is done in order to reduce the computational
time by avoiding to draw the figure with Bressenham’s
algorithm each time.

The best fitness values are obtained in figures with
high straightness. Fitness values drops faster in this
type of figures because it is easier to approximate
straight lines than curved lines, therefore the individ-
ual evolutions gets also faster.

Finally, the average distance error take into ac-
count both fitness and number of points. Smaller er-
rors will be obtained in figures with high straightness
and/or high number of points. Even when the number
of points in the resulting figure exceeds the number of
points in the reference figure, the average distance er-
ror is not affected negatively.



U n i v e r s i d a d  d e  G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012    20



A method to obtain a polygonal approximation of open
and closed 2D figures with minimal a priori informa-
tion was presented. The proposed method is based
on the Evolutionary Programming approach which in-
cludes only mutation and replacement process. This
evolutionary technique enables the individuals to be
flexible with respect to the number of points depend-
ing of the reference figure. At the same time, since
its evolutionary nature, EP optimize the sequence of
the set of points which will be used as vertices in the
polygonal approximation. Good quantitative and qual-
itative results were observed, even when the number
of vertices in the resulting figure did not match with
reference figure.

Work to be done includes to perform tests with
larger images as well as the increment of maximal
number of points allowed in each figure. The auto-
matic computation of the fitness function parameters
merits further study. In particular, we are going to ex-
plore how the parameters change when using different
reference curves or even a sot of them simultaneously.
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

           
        
 

            
         
     

          
        
        
      
     

         
         
    

           
         
        
    

          
        
       
   

            
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