
U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 126

     
   
  *   ∗  **   ***



            
           
             
               
            
             
              
               
            
              
                 
                


     
     



             
              
           
              
          
               
             
            
               
             



Requirements elicitation is the process of uncovering, acquiring, and elaborating requirements for software
systems [2].

Requirements elicitation is a complex process that involves many activities with a variety of techniques and
approaches for performing them. Many of the techniques for requirements elicitation are borrowed from the
social sciences because they emphasize the communication aspects with the stakeholders of the project.

 
    
 

   


Most of the elicitation techniques such as for instance, interviews, question-
naires, introspection, brainstorming, etc. do not produce an executable artifact
that permits validation with the future users of the system. As a consequence,
it is relatively common to discover that the first release of a system does not
fit the requirements which were defined at the beginning of the project. We
consider that an early prototype of the system produced during the elicitation
phase can help in the definition of the system, although it implies additional
costs of codification.

*                
**              
***                    

Vol. 22 (NE-1), ENC Marzo 2012 127

U n i v e r s i d a d d e G u a n a j u a t o

Fortunately the field of programming languages
provides a variety of frameworks and tools useful for
rapid system prototyping like for instance for domain-
specific languages (DSLs) development.

A DSL is often a reduced language devoted to a
specific domain and it is defined by creating abstrac-
tions that model the concepts of the domain and the
interrelations between them.

We consider that the DSL development provides
support to the elicitation process because it requires
a better understanding of the problem. Unfortunately,
there are few works in the literature devoted to the
definition of design principles for DSLs that can be
used in the development of DSLs for the requirement
elicitation process.

In this work we sustain the use of DSLs during the
elicitation process. Specifically we suggest the cre-
ation of DSLs adapted to domains of interest, for this
we introduce simple cases of study where we illustrate
how it is possible to clarify the concepts and their in-
terrelations of a domain in order to be modeled (or
elicited). DSL development is conducted by following
a set of DSL design principles which are previously
introduced. This is not a trivial task since there are
many and clearly different paradigms able to produce
DSLs.

At a later stage, we can implement DSL programs
(sometimes they can generate code of the final ap-
plication) that model and approximate the intended
final system, and that can be discussed with stake-
holders. These discussions provide the feedback that
validates or rejects the desired requirements. Note
that this proposal of elicitation causes a redefinition
of the analyst profile since programming skills are
mandatory. For this, we enunciate an analyst profile
and the suggested steps for requirements elicitation
based on DSLs.

The rest of the paper is organized as follows: In
Section Domain-Specific Languages we introduce the
DSL concept and discuss the newest paradigms for
DSL development. In Section Cases of Study in DSL
Development we describe principles of DSL design ori-
ented to requirements elicitation and present three ex-
amples. In Section DSLs and Requirements Elicitation
we propose a profile and a procedure for requirements
elicitation based on DSLs. Finally, we conclude in Sec-
tion Conclusion.

 

A domain-specific language is a programming lan-
guage tailored for a particular application domain
(e.g, Tex and Latex for document preparation, HTML
for document markup, etc.). The main purpose of DSL
design is the correct abstraction of the domain (Hudak
[6]). This fact is very useful in software engineering.

Currently, the development of a new (domain) spe-
cific language does not represent an extremely hard
work, like years ago. Today, there are many modern
frameworks on different paradigms that are able to
support DSL development. For instance, we experi-
enced the multi-paradigm functional-logic language
Curry, specifically we developed a DSL for routers
specification [11] and a DSL for CNC (a manufactur-
ing language) code generation [1] which is referenced
in the following section.

In the field of formal languages there exist the well
known tools: LEX (FLEX) and YACC (BISON) for C
compilers generation. Recently a modern tool called
ANTLR [10] for Java compilers generation became pop-
ular. We will show in a later section how ANTLR can
be useful for DSL development. Furthermore, Ruby is
a modern object-oriented language that provides ad-
vantages of higher level than Java, in next section we
describe an example on Ruby. We will explore this
kind of frameworks with an example of use.

     

In this section we describe three examples for DSL de-
velopment employing different languages and frame-
works. They were developed in order to define design
principles which could be useful in any paradigm and
also to analyze advantages and disadvantages of using
DSLs in several programming frameworks.

The DSL development showed us that the process
of DSL design is similar to the steps that an analyst
follows in order to discover and clarify the domain
which is subject of analysis for a new system develop-
ment. In this section we reason about this similarity
and its fundamentals, then we propose DSL develop-
ment as an auxiliary and useful activity for require-
ments elicitation.

 

Any application development should be envisioned fol-
lowing the next principles proposed by Bentley [3]:

•  We should use a language that mini-
mizes the distance between the problem-solving
strategies we have in mind and the program.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 128

•  We should use a language that helps
us to reason about its correctness.

•  We should keep in mind that the
next developer of a program might be someone
who is totally unfamiliar with it.

These principles are naturally covered by DSLs.
A DSL is composed of abstractions that model the
domain concepts (vocabulary) and their interactions.
DSL programs are simple and can reduce the hard-
ness of the analysis, design and maintenance [6] of
system prototypes.

The main decision is to determine what aspects
of a domain should be modeled by the DSL. The re-
quirements modeling with respect to the Objectory
methodology [7] is described by three particular mod-
els: behavior, information and presentation. Follow-
ing this basis we conduce the DSL design by focusing
on the static (w.r.t. the model of information) and
dynamic (w.r.t. the model of behavior) aspects of a
domain.

 

A particular domain is formed by a set of citizens that
perform the activities proper of the domain. For in-
stance, in a bank an account or an account holder
are common domain concepts. Some of them are not
physical elements but abstractions intended to model
a reality. Similarly, in object-oriented languages it is
common to talk about classes; and in software engi-
neering the concept of domain model is also familiar.

 

It represents the set of actions performed by each el-
ement of the static aspect. It is usually known as the
business rules of a software system. In the setting of
object-oriented languages each class method imple-
ments a particular behavior of a class.

In architectural design of software, normally both
the static and dynamic aspects are divided into more
than one view. For instance the common views busi-
ness rules and web services could be considered as
the dynamic aspect in the analysis of a system. Simi-
larly the domain model view and the persistence view
represent the static aspect of a system. Nevertheless,
these design considerations of a system are in a dif-
ferent level of abstraction than the elicitation phase,
and thus, in the following we will only focus on the
static and dynamic aspects of a domain.

Regularly, it is during the requirements analysis
when the system analyst translates the stakeholder
expressions in technical documents or diagrams that
materialize the requirements specification. Such spec-
ifications are class diagrams, entity-relation diagrams,
etc. which properly model domain abstractions and
their interactions. Thus, developing a DSL implies (in
an early phase) the discovering of requirements.

In the following we introduce some cases of study
focusing in static and dynamic aspects of the corre-
sponding domain.

   

Curry is a universal programming language aiming to
amalgamate the most important declarative program-
ming paradigms, namely functional programming and
logic programming.

Example 1 Problem description: The Computerized
Numeric Control (CNC) is an industrial language for
the manufacturing of products. CNC programs are se-
ries of codes that consist of assembler-like instructions.
Hence, they are low-level programs that require special-
ized developers in order to gain productivity. A system
for CNC code generation is usually mandatory. We re-
quired a DSL that resemble common CNC operations
like drilling holes, performing linear and circular move-
ments, defining units of measure, doing canned cycles,
etc. These operations were going to be interpreted by a
CNC machine with mechanical tools able to move in the
X, Y, and Z axis with respect to a static surface.

The first step of the DSL development is to deter-
mine the static and dynamic aspect of the domain.

1.  The citizens of this domain are tools,
geometric figures, measures, reference axis, etc.

2.  A main requirement of this DSL is
to produce CNC code. In this way, we should
produce real code, i.e., a DSL program is an ex-
ecutable requirement. Once a tool is defined
in CNC all kind of movements are actions that
represent the behavior of a physical tool; thus,
drawing arcs, drawing lines, performing canned
cycles, etc. constitute the dynamic part of the
system.

In Curry a program is composed of a set of func-
tions. In this way all static abstractions to be modeled

Vol. 22 (NE-1), ENC Marzo 2012 129

U n i v e r s i d a d d e G u a n a j u a t o

are represented with functions or with data struc-
tures, while the dynamic aspect of the system is mod-
eled by employing functions and sometimes chaining
function invocations.

For instance, a function to make a circular cylinder
is the following: DrawCylinder (i, j, k, Height,
Radius,Feedrate, dx) whose arguments i,j,k in-
dicates the center of the circle; Height represents the
depth of the drilling; Feedrate represents the cutting
speed and dx represents the width of the cutting tool.
Each argument represents a static element of the do-
main, while the function is the dynamic face when it
is invoked. A DSL program is as follows:

DrawCylinder (2.0,2.0,0.0,0.25,1.0,0.5)

which makes a circular canned (see figure 1) by
defining a center of the circular sector in (2,2,0)
with a 0.25 units depth, with 1.0 units radius
and a tool 0.5 units wide. This DSL function pro-
duce de following CNC code:
[(G "00"),(X 2.0),(Y 2.0),(Z 0.0)]
[(G "01"),(Z (-0.25)),(F 40.0)]
[(G "01"),(X 2.5),(F 120.0)]
[(G "03"),(X 2.5),(I 2.0),(J 2.0),(K 0.0),

(F 120.0)]
[(G "01"),(X 3.0),(F 120.0)]
[(G "03"),(X 3.0),(I 2.0),(J 2.0),(K 0.0),

(F 120.0)]
[(G "01"),(X 3.5),(F 120.0)]
[(G "00"),(X 2.0),(Y 2.0),(Z 0.0)]

  .  

The description of the DSL can be found in
[1]. In this case of study the goal was the mod-
eling of a domain and also to produce real code.
Here, it is evident that the DSL development con-
duced to a better understanding of the domain
and, besides, it was possible to yield the code of
the final application.

  

ANTLR [10] is the most modern language tool
that provides a framework for constructing com-
pilers from grammatical descriptions. It is pos-
sible to define actions for a variety of target lan-
guages.

Example 2 Problem description: A software de-
veloper requires a tool for expressing the user
requirements of new projects to be developed. In
a typical meeting with a customer, she clarifies
which are the abstractions to be represented and
the actions they should perform. Regularly, ab-
stractions are classified as: logic, for actions or
services; data for concepts to be recorded and vi-
sual for indicating the future system interfaces.
It should be desirable a tool for registering the
meaningful software requirements.

In order to solve the problem we focus in the
following aspects of the problem:

1.  In this case, we identify the concept
of abstraction and its different types like
the static citizens of the domain, i.e., in a
meeting is mandatory to register the follow-
ing abstractions: logic elements, for actions
representing; data elements, for database
tables and visual elements for interfaces
specifying.

2.  Each abstraction and its at-
tributes should have a method to interact
with each other. In an object-oriented en-
vironment there is a sequence of method
calls which are contained inside another
method. Hence, once abstractions are de-
fined it is required a mechanism for com-
bining them and for calling them.

In the following we introduce a grammar
which is composed by a set of syntactical rules
in lowercase and a set of lexical rules.

prog : abstraction+ ;
abstraction : dataElement | logicElement

| visualElement ;
dataElement : ’data’ ’element’ IDABSTRACTION

’{’ dataAttrib* ’}’;
dataAttrib : ’attrib’ ID;

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 130

logicElement : ’logic’ ’element’ IDABSTRACTION
’{’ logicService* ’}’;

logicService : ’query’ ID
| ’action’ ID ;

visualElement : ’visual’ ’element’ IDABSTRACTION
’{’ visualItem* ’}’;

visualItem : vDataItemOp | vLogicItemOp
| vVisualItemOp;

vDataItemOp : dataOp dataGranule
(ID|IDABSTRACTION);

vLogicItemOp : ’call’ logicOp ID;
vVisualItemOp : ’call’ ’visual’ IDABSTRACTION;
dataOp : ’add’ | ’update’ | ’del’ ;
dataGranule : ’data’ | ’attrib’ ;
logicOp : ’action’| ’query’ ;
//lexical rules
IDABSTRACTION : (’A’..’Z’)

(’A’..’Z’|’a’..’z’|’0’..’9’)*;
ID : (’a’..’z’)

(’A’..’Z’|’a’..’z’|’0’..’9’)*;

Both lexical and syntactical rules define the
set of concepts of the domain. For instance, a
DSL program is composed of abstractions. An
abstraction is composed of data, logic or visual
elements; and they have attributes, services or
items respectively. Relations between concepts
are defined by sequences of compositions which
are explored when an expression is decomposed
(by a compiler) following grammar rules.

A DSL program is as follows:

data element Book
{ attrib bTitle
attrib bAuthor
attrib bIsbn

}
logic element BookUsing

{ query mostUsed
query lessUsed
action avgUsing

}
visual element Interface
{ add data Book

add attrib bAuthor
del attrib bIsbn
call action avgUsing
call query lessUsed
call visual Window

}

We observe in the DSL program that all type
of abstraction can be classified as data, logic or
visual. The visual element Interface encloses the
behavior of the abstractions since it models the
interactions between them inside of an interface.
The figure does not include instructions for real
code generation, however this is not a hard task
because they could be added to the syntactical
rules [10].

   

In this section we analyze an instance of DSL de-
velopment in Ruby. Ruby is an object-oriented
programming language very useful for DSL de-
velopment [12].

Example 3 Problem description: let us consider
a domain relative to house building. Frequently
a house is constructed by taking into account di-
verse materials; for instance, walls can be con-
structed with many type of bricks: handcrafted or
industrial and the construction activities imply la-
bor hours. A system that allows us to define types
of materials and to compose segments (from win-
dows, doors, etc.) in order to build a house and to
calculate its cost is desirable.

Again, we clarify the static and dynamic as-
pect of the domain.

1.  In the house building domain we
can discover the following citizens or con-
cepts: brick, wall, labor hour, segment,
window, door, etc.

2.  In order to construct segments
we should be able to add materials, com-
pose segments, add segments, etc. Each
time an element is added it must calculate
its cost, and this, should be automatically
considered for the total cost of the construc-
tion.

In summary, the goal is to develop a system
for calculating the implicit costs derived from the
construction of a house.

In the following we describe the DSL whose
design was inspired by Martin Fowler in [12].

Typically a house is built from different seg-
ments such as floor, walls, windows, doors, etc.,
and all segments contribute to the total cost
computation.

class Construction
def initialize
@segments = {}

end
def addSegment arg
@segments[arg.id] = arg

end

Vol. 22 (NE-1), ENC Marzo 2012 131

U n i v e r s i d a d d e G u a n a j u a t o

def [] arg
return @segments[arg]

end
def allsegs
@segments.values

end
def ccost

tcost=0
allsegs.each do |s|

tcost += s.scost
end
return tcost

end
def to_s
"\n This Construction is composed of \n" +

allsegs.join("\n") + "\n
And the total cost is: %.2f "%[ccost]

end
end

The concept Construction is the main ab-
straction. It resembles a construction project,
which includes all segments that compose an
entire house.

Creating a system for costing requires to de-
termine particular concepts to be taken into ac-
count. A brick is modeled as it is shown below:

class Brick
attr_accessor :type, :number
def initialize
@@costh = 2.5
@@costi = 2.0

end
def cost
if type==:industrial
return @@costi * number

elsif type==:handcrafted
return @@costh * number

end
end
def to_s
"Brick requirements <<type: %s, quantity: %d,

cost %.2f>>" %
[@type,@number,cost]

end
end

A brick is modeled in its corresponding class,
let us observe the class variables (@@costh,

@@costi) that define prices for all instances of
Brick.

Example 4 A DSL program and its execution is
presented in the figure 2. In the code we can ob-
serve a construction composed of a wall, and the
wall has some requirements, e.g., industrial and
handcrafted bricks and units of labor. Let us ob-
serve the domain language instead of computa-
tional language.

When the domain user begins a program
(begBuilding), a global variable (as in [12]) is
established to register the construction and all
its segments. When a segment is declared, again
a global variable defines the current segment.
Variables predefined with “:" are denominated
symbols in Ruby, and they are associated to a
new object.

DSL development shows how the understand-
ing of the project becomes better since it im-
plies detection and programming of domain con-
cepts just as an analyst should face the elicita-
tion phase.

   

In this section we present a set of skills neces-
sary for the analyst for requirements elicitation
based on DSLs. We also describe a number of
steps used to achieve a successful elicitation.

 

The requirements process is often described as a
series of activities such as elicitation, modeling,
triage (determining which subset of the require-
ments ascertained by elicitation are appropriate
to be addressed in specific releases of a system),

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 132

  .         

specification, and verification; although there is little uniformity in the
industry concerning names given to these activities, see [5] for a survey.

Next, based on our experience in DSL development, we propose some steps
that lead to a successful requirements elicitation.

1.  meetings to motivate interaction between stakeholders, users
and analysts and produce abstractions from the problem domain.

2.  the static part of the domain by uncovering abstractions either
physical or conceptual.

3.  (1) the dynamic behavior of each abstraction, (2) how domain
citizens interact, and (3) how each domain citizen affect the others; i.e.,
how abstractions coexist.

4.  with stakeholders about abstractions and their behavior. Take
into account the feedback to improve the static and dynamic domain
identification.

5.  a DSL.

6.  DSL programs for modeling the required system.

7.  the DSL programs to stakeholder for tuning and validating the
system model.

Once the steps are concluded the understanding of the domain is fully
achieved and depending on the paradigm used in the DSL development it is
possible to yield code fragments of the real system.

     

A mean for arguing the validity of our elicitation steps could be based on
a simple comparison between the number of abstractions uncovered by
typical requirements elicitation and those based on our procedure. How-
ever, it seems clear, that developing an executable artifact that models a set of

domain abstractions and their
behavior produces a best un-
derstanding of the domain,
just like elicitation require-
ments pursues.

When feedback with stake-
holders is performed, per-
haps, someone could argue
that they are unable to discuss
about programs with an an-
alyst, however DSL programs
are simpler and understand-
able and frequently they can be
read in natural language.



This work presented three
examples of DSL development
which were mainly oriented
to present a methodology for
DSL design and to demon-
strate how it can be useful
despite of significative differ-
ences between the paradigms
(declarative, formal or object-
oriented frameworks).

The idea of using software pro-
totypes for software require-
ments is not new. [8] pro-
poses an elicitation method
based on a tool that uses
XML to record the answers ex-
posed by a domain user. Sev-
eral authors propose specifi-
cation languages for particu-
lar domains such as, e.g., [9,
4]. However they do not con-
sider the use of DSLs as a
main procedure for the defi-
nition of a general method of
requirements elicitation. We
have identified a set of nec-
essary abilities for the analyst
and a procedure composed of
a set of steps that are neces-
sary for a successful elicitation
process. The profile of the ana-
lyst ensures that a DSL devel-
opment is accomplished within
the time limits given for the re-
quirements phase.

Vol. 22 (NE-1), ENC Marzo 2012 133

U n i v e r s i d a d d e G u a n a j u a t o



This work has been partially supported by the Mex-
ican "Dirección General de Educación Superior Tec-
nológica" under grant 2369.09-P and by the Span-
ish "Ministerio de Ciencia e Innovación" under grant
TIN2008-06622-C03-02 and by the "Generalitat Va-
lenciana" under grant PROMETEO/2011/052.



            
        
   

          
       

          

          
     

            
      

          
           
 

          
        


           
       
    

           
      

         
    

            
           
         
  

        
    

