
U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 134

      
   
  ∗   ∗    *



           
             
              
           
            
           
            
           
               
            
               
  

     
     



             
             
              
                
             
            
            
          
             
            
             
              
 



A Software Product Line (SPL) is defined as “a set of software-intensive systems that share a common, managed
set of features satisfying the specific needs of a particular market segment or mission and that are developed
from a common set of core assets in a prescribed way” [1]. The main benefit of a SPL is to economically exploit
the similarities and differences between the software products derived from it.

 
     
    
    


    
     
   

The SPLs have appeared in Software Engineering as an approach whose goal is
to create variations from a common infrastructure. The emergence of this new
approach in the software industry brings what is called Software Product Line
Engineering. This engineering gives companies productivity gains, increased
product quality, decreased time-to-market and more efficient use of resources
[1].

Software Product Line Engineering includes two processes [2]: 1) Domain
Engineering, which develops the common elements, that is, the creation and
establishment of a software platform that considers the similarities and differ-
ences to be achieved, in other words, the variability is defined and modeled.

*                   
 

Vol. 22 (NE-1), ENC Marzo 2012 135

U n i v e r s i d a d d e G u a n a j u a t o

(2) Application Engineering, which has to do with the
development of systems that are members of the SPL
from the common elements and taking into account
the variability model defined. Both processes can be
viewed separately but must work together in order to
succeed.

Variability is defined as the ability to change or
customize a system [3]. It occurs when the similar
and varible characteristics of SPL are identified. The
variability is found in two groups of systems: cus-
tomizable systems and SPL [1]. Customizable systems
are those in which the variability is mainly due to the
selection by the user of the elements that matter most
and SPL are series of relatively similar products that
allow reuse of the common assets.

The variability modeling is important because it
allows the management of the variability and devel-
opment of a clear and specific documentation of SPL
and resolve the differences found in them. The vari-
ability models generated in the development of a SPL
can have a number of features and a large number of
combinations among them. Therefore, it is practically
impossible to manage and document the variability
of complex models without the aid of tools. On the
other hand, there is a wide variety of formalisms for
modeling variability at different levels and in various
artifacts, making the management and documentation
of variability more complicated. It is also important to
model variation points, variants and dependencies as
first-class elements, considering the concepts of do-
main regardless of their representation in the specific
development artifacts. COVAMOF (ConIPF Variability
Modeling Framework) [2] is a framework for variability
modeling which is explained in further detail in Sec-
tion COVAMOF. To take advantage of all the features
that COVAMOF offers it is desirable to have a com-
puter aided tool. Unfortunately the tool presented in
[3] is not available at the moment and its development
seems to have stopped. In agreement with one of the
authors of COVAMOF, the development of a plug-in
for modeling variability under COVAMOF was decided.

The support that a computer aided tool that follows
COVAMOF framework to a SPL architect is extremely
important. The architect of the SPL is responsible for
the development of the architecture, which is the ar-
tifact where the quality of the products of SPL is de-
fined [4]. As such, the architecture must also incorpo-
rate the modeling of variability at this level. The main
motivation of the work presented here is to incorpo-
rate the COVAMOF framework to AOPLA [5] which is
an approach to design a SPL architecture. This ar-
ticle presents the development of an Eclipse plug-in

that supports the COVAMOF framework and is orga-
nized as follows: Section COVAMOF explains the COV-
AMOF framework, Section Development in the Eclipse
Platform explains the details of the Eclipse platform
which is the basis for the development of plug-in. Sec-
tion COVAMOF Plug-In explains the work done so far
in the development of plug-in. Finally conclusions are
given.



COVAMOF (ConIPF Variability Modeling Framework)
is a variability modeling framework [2]. It represents
variation points, variants and dependencies at dif-
ferent levels of abstraction of a system as first-class
elements. The levels of abstraction in a SPL are fea-
tures, architecture and component implementation.
COVAMOF considers two views: the Variability View
and Dependency View.

The COVAMOF Variability View (CVV) is the graph-
ical representation of variation points and dependen-
cies. The main objective of this view is to show to
the software engineer the multiple options for features
that are available in different abstraction levels and
to analyze their relationships at different levels. CO-
VAMOV defines two views on the CVV: the Vatiation
Point View and the Dependecy View. The Variation
Point View contains the following elements:

1.    represents the place where
the option is available for a LPS. A variation
point is the element or subject that varies within
a domain artifact [2]. There are three types of
variation points in the CVV [2]:

•  which is the result of selecting
zero or a variant of one or more variants
associated with the variation point.

•  is the selection of a variant be-
tween one or more associated with the vari-
ation point.

•   corresponds to the se-
lection (zero or more) between one or more
variants associated.

•  is the selection of one or more of
one or more variants.

•  is the value that can be chosen from
a predefined range.

For each variation point there are several prop-
erties defined: a description and information
about its state, the rationale behind the bind-
ing, the realization mechanism and its associ-
ated binding time. Variation points that do not

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 136

have associated resolution mechanism are those
that are realized by variation points at lower lev-
els of abstraction. This type of relationship be-
tween variation points is represented by a real-
ization relation.

2.  are the entities that represent the op-
tions available to realize a variation point. Ac-
cording to [2] a variant is defined as "the rep-
resentation of an object of variability within the
domain artifacts." Variants can represent any-
thing from an object or class, a file to a block of
code.

3.    specifies the rules that
determine the variants to choose from a vari-
ation point in a lower level. As stated, varia-
tion points are determined by variation points at
lower levels of abstraction are used relations res-
olution. Thus traceability is achieved within the
hierarchical structure of the SPL.

For its part, the Dependency View main objective is to
show restrictions affecting the choice of variants of the
variation points. The dependencies originate from the
domain of application, the platform, the design details
and the implementation of quality attributes. These
dependencies specify how the binding of a variation
point influences the value of the property in the sys-
tem [2]. On the other hand, a Dependency Interaction
occurs when the variation points are part of multiple
dependencies.

With the use of the Variation Point View and the
Dependency View the software engineer has a broader
picture of the variation points and dependencies asso-
ciated with the products and, thus, has the elements
necessary to come up with a development strategy
during the early stages of the process of SPL. The
graphic elements of the view point and dependence
COVAMOF variation shown in fig. 1.

  .   

In order to exploit the characteristics of the COV-
AMOF framework it was developed a tool for the au-
tomation support as presented below.

    

Eclipse is a platform that allows the integration of
different applications in order to build an Integrated
Development Environment (IDE). Eclipse is divided
in three subprojects: Eclipse Project, Eclipse Tools
Project and Eclipse Technology Project. Unlike other
platforms, in order to provide all of its functionality,
the Eclipse IDE is formed by plug-ins.

Eclipse Project [6] [7] supports the development of
a platform or framework for the implementation of an
IDE. Eclipse Tools defines and coordinates the inte-
gration of different categories of tools based on the
Eclipse platform. For example, the graphical editors
employ the Graphical Editing Framework (GEF) and
the Eclipse Modeling Framework (EMF). Eclipse Tech-
nology Project is a higher level project in the Eclipse
Foundation. The Technology projects deal with ex-
ploring technology and have a limited life cycle. A
project ends when the results of the research are pub-
lished or when it is incorporated into another project
[6] [7].

Eclipse provides several frameworks for the devel-
opment of graphical, software model manipulation,
web and other kinds of applications. Among such
frameworks, the following were employed in the work
presented here: 1) GMF [6] provides a component
for the generation and execution of graphical editors
based on GEF and EMF; 2) EMF [6] supports the
generation of code for the development of tools and
applications based on a structured model; and 3) GEF
which is a framework for building visual editors.

A model is an abstract representation of a domain.
It captures the important elements of the domain and
its relationships. A metamodel models characteristics
of the models and the elements that form them [7].
For developing an Eclipse plug-in a metamodel must
be developed. Such a metamodel is defined by using
EMF by means of a model definition language named
Ecore. Ecore constitutes the core of the project. GMF
defines a process in order to develop a project or tool
[7]. Such a process was followed in the development
of the COVAMOF plug-in and it is explained in the
following Section.

 

The objective for developing the COVAMOF plug-in
for Eclipse is to support variability modeling for a
SPL according to COVAMOF framework. The plug-in
was developed with the support of GMF and EMF in

Vol. 22 (NE-1), ENC Marzo 2012 137

U n i v e r s i d a d d e G u a n a j u a t o

Eclipse. The activities carried out to develop the plug-
in, are explained next.

First, a use case model was developed in order
to guide the development of the plug-in development.
The use case model describes the variability modeling
related activities that the user will be able to perform
with the aid of the COVAMOF plug-in. Such activi-
ties must comply with the COVAMOF framework. For
the first version of the plug-in, the scope includes
creating variation points, variants and dependencies
use cases. Next, the plug-in was developed using the
Eclipse platform, with the aid of GMF y EMF. Ac-
cording to the process depicted in fig. 3, the plug-in
development was as follows:

1.   The metamodel was defined
according to the Ecore domain model, generat-
ing next the domain generation model. Such a
model is depicted in fig. 4 where it can be seen
how the COVAMOF metamodel was translated
into the EMF metamodel. Due to space restric-
tions it is not possible to give a more detailed
view of the translation. However, as it can be
seen in the figure, the classes of the COVAMOF
metamodel were translated into the Ecore. The
properties of each one of the classes, as defined
in COVAMOF, can also be noticed in fig. 4. It
is important to mention that the abstract_layer
class allows for indicating the Variation point re-
alizations among abstraction layers.

2.    Corresponded to the def-
inition of the plug-in metamodel. Such a meta-
model is based on the COVAMOF metamodel
which defines the structure of the COVAMOF
framework elements and their relationships as
they constitute the CVV. The COVAMOF meta-
model is shown in fig. 2.

3.    The generator model is
created and, from this model, the EMF classes
of the model are generated. Such a model serves
to generate the code of the editor.

4.       
  Tooling, Graphic and Mapping
models are combined. With this, the tool bar of
the COVAMOF plug-in is created.

5.     A configuration
file is created in order to generate the diagram
code. All previous processes are combined to
create the final diagram editor.

  .  

The display of the COVAMOF plug-in display seen
in fig. 5. The variability model that is shown in fig.
5 is an excerpt of a SPL variability model. This SPL
corresponds to a tool for academic activities and prod-
ucts and it is still under development. On the right
side of the display, the tool bar is shown. The COV-
AMOF notation can be noticed on the upper side. On
the bottom of the tool bar, the arrows that establish
relationships among variation points, variants an de-
pendencies, can also be seen.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 138

  .      

The plug-in has been tested with several examples found in [2] [3] and [8],
and it is currently being tested in the development of SPL that is employing
AOPLA for the design of the architecture. It must be reminded that the
main motivation for the development of the plug-in is to support variability
modeling in AOPLA [5]. AOPLA is an approach for the design of product
line architectures that follows a concern-oriented approach. So far, AOPLA
does not include a strong formalism for modeling variability. Due to this,
variability management and product derivation are hard to accomplish. The
domain analysis and modeling phase of the SPL development has already
been finished and the plug-in has been used for modeling variability found in
feature, entity-relationship and functional models.

  .    

The properties shown at the
bottom of the figure corre-
spond to properties of the
Documents variation point.
Another important element
of the COVAMOF framework
that can be identified in fig.
5: a dependency called Plat-
form. Such a dependency is
associated (by means of an
Association element) to the
Documents variation point
and it restricts the selection
of the Document’s variants
depending on the selection of
the Platform variation point.

In addition to variation points
and variants, two abstraction
layers can be noted: features
and architecture (a feature is
a high level requirement and
it is the first formalism for
modeling variability during
domain analysis and modeling
of a SPL). It can also be seen
that the Documents variation
point in the features layer
is realized (by means of a
realization relationship named
DocumentRealization) by the
Printing format variation point
in the architecture layer. The
Documents variation point
encompasses variants: CV,
Prom-CV and Other.

The architecture modeling
phase for the product line is
currently being developed and
the results so far indicate the
following improvements to the
plug-in:

• The differentiation of the
types of variation points
(as discussed in Section
I) by means of a different
notation since the arrows
and labels employed are
not meaningful enough
for the users.

Vol. 22 (NE-1), ENC Marzo 2012 139

U n i v e r s i d a d d e G u a n a j u a t o

  .      

• The inclusion of ’author’, ’date of creation’ and ’date of modification’
properties for variation points, variants, and dependencies.

• The inclusion of a ’view mode’. That is to say, to give the user the choice
of viewing only variation points within the CVV or only dependencies
within the CVV.

• The consideration of concerns traceability. AOPLA includes a concern
model and it is necessary to achieve traceability of concerns during the
process. So far, he inclusion of a ’concern’ and ’type of concern’ prop-
erties for variation points and variants, has been detected as an im-
provement. However, it is expected to define more support between the
concern and variability models as the process develops.

Since the architecture modeling phase of the SPL is still being developed it
is expected to find more improvements for the plug-in. As for derivation, the
dependencies modeled in the CVV support the derivation process. Dependen-
cies are relationships between variation point that specify a system property
whose value is based on the selection of variants in several variation points
[8]. During the derivation process, several restrictions on these properties are
specified according to SPL products’ requirements.. It is very common that
multiple dependencies affect one decision in particular. The consequences of
this can be that not all of the requirements of a specific product are satisfied.
So far AOPLA encompasses a derivation process that is based on concerns
and on the architecture model. Concerns are first identified and modeled
the domain engineering phase. The concerns model is continuously updated
during architecture modeling so that it includes the traceability and mapping
into modules and components.

However, the dependencies
definition and their considera-
tions is entirely left to the ar-
chitect’s knowledge. As a re-
sult of this, the derivation pro-
cess is prone to errors. CO-
VAMOF will therefore alleviate
this situation.



Variability modeling is a key
issue for a Software Product
Line Engineering approach. A
Software Product Line (SPL)
takes economic advantage of
commonality and variability
that already exist within the
products. COVAMOF is a
framework for variability mod-
eling that allows for modeling
variation points, variants and
dependencies as first class
elements within all of the
abstraction levels of a SPL.
COVAMOF also encompasses
support for the derivation of
products as well as for the
evolution of the SPL.

This paper presented the
development of a Eclipse
plug-in for COVAMOF. At the
present time, this plug-in
encompasses the modeling of
variability that corresponds to
the Variation Point and Depen-
dency views. The plug-in has
been tested with several exam-
ples provided in the literature
[2] [3] [5] [6].

Currently, the plug-in is be-
ing used in the development
of a SPL for a tool for aca-
demic activities and products
whose product line architec-
ture is being developed with
AOPLA [5]. The main moti-
vation for the development of
the plug-in for COVAMOF was
to provide variability modeling
support for AOPLA. Although

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 140

the development of the product line architecture and
the SPL have not been finished yet, some important
improvements have been detected. Furthermore, im-
portant contributions between AOPLA and COVAMOF
have been found. This contributions consist mainly
in supporting the concern-oriented approach of AO-
PLA: concern traceability within the variability model
and concern-oriented product derivation. A second
version of the plug-in is already being developed. The
academic activities and products product line will
serve to test the new version of the plug-in.

Future work for the plug-in consists in adding CO-
VAMOF derivation process. An important contribu-
tion in such a derivation process is that it should be
concern-oriented, in order to comply to AOPLA focus
on concerns. An additional future work is to include
the COVAMOF support for evolution. As has already
been mentioned such a support is a method for evalu-
ating the variability needed for including a new prod-
uct within the SPL. The inclusion of such a method
should within AOPLA will help in the development of
the variability view in AOPLA.



          
  

             
      
  

              
        
        


           
     

           
       
         
  

            
    
        

           
 

       

