
U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 N. 5 Julio-Agosto 2012 12

Keywords:
Difussive mixing; GPU accelerated simu-
lation; real-time visualization.

Palabras clave:
Mezclado difusivo; simulación acelerada
con GPU; visualización en tiempo real.

ABSTRACT

In this article a strategy to accelerate the simulation and visualization of combined ad-
vective–diffusive mixing of a contaminant inside a square cavity with time-dependent
boundary–conditions is presented. No moving walls are required to mix the fluid, but
natural convection by periodic temperatures on opposite walls. A contaminant will diffuse
asymptotically to uniform concentration. Advective mixing is evaluated with Lagrangian
tracking and diffusive mixing is calculated with the Diffusive Strip method. That calcu-
lation requires hours of CPU time due to the large amount of numerical operations and
the precision requested but it can be directly translated to a Graphics Processors Unit
(GPU), improving the performance by orders of magnitude. The algorithms implemented
in Compute Unified Device Architecture (CUDA) and an analysis of the speed achieved
are presented. The visualization of the diffusion process is done simultaneously using the
data stored in the GPU memory, which allows to make a real-time analysis of the mixing.

 RESUMEN

Se presenta una estrategia para acelerar la simulación y visualización de mezclado advecti-
vo–difusivo de un contaminante dentro de una cavidad cuadrada con condiciones de frontera
dependientes del tiempo. No se requieren paredes móviles para mezclar el fluido, sino la con-
vección natural por temperaturas periódicas en paredes opuestas. Un contaminante se diluye
asintóticamente hasta una concentración uniforme. El mezclado advectivo es evaluado con
rastreo lagrangiano y el mezclado difusivo con el método Diffusive Strip. Este cálculo requiere
horas de tiempo CPU debido a la gran cantidad de operaciones numéricas y la precisión re-
querida, pero puede ser directamente transportado a una Unidad de Procesamiento Gráfico
(GPU, por su acrónimo en inglés), mejorando así el rendimiento en órdenes de magnitud.
Se presentan los algoritmos implementados en la Arquitectura de Cálculo Paralelo (CUDA,
en inglés) y un análisis de la velocidad lograda. La visualización del proceso de difusión es
simultánea usando los datos almacenados en la memoria de la GPU, lo que permite hacer un
análisis en tiempo real del mezclado.

*Grupo de Modelos Climáticos. Centro de Ciencias de la Atmósfera. Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, México, D. F., C. P. 04510. E-mail:
asierra@unam.mx
**Departamento de Recursos Naturales. Instituto de Geofísica. Universidad Nacional Autónoma de México. Ciudad Universitaria, Coyoacán, México, D. F., C. P. 04510. E-mail: luiggi@unam.mx

Recibido: 12 de abril de 2012
Aceptado: 10 de mayo de 2012

INTRODUCTION

Mixing has been studied during centuries and, in particular in the past few
decades, there has been a recent surge of studies of fundamental properties
of this study area due to its applications in manufacturing, food, pharmacol-
ogy and other industries. The literature reporting progress in the field is large
and the interested reader is referred to monographs and review articles for a
comprehensive survey, for instance [2] and [3]. Many of the recent advances
are the result of computerized measurement and simulation techniques that
are now ubiquitous throughout the world. A pioneer investigation on the sub-
ject is the blinking vortices flow proposed by Aref [4]. This mixing flow is the
two dimensional motion of an incompressible inviscid fluid, generated by two
corrotating point vortices fixed in space that are switched alternatively on
and off. This flow can be described analytically and mixing can be illustrated
by Lagrangian tracking of markers, whose position of markers at all times

Accelerated flow visualization of advective–diffusive
mixing processes using GPUs

Alejandro Aguilar Sierra*, Luis M. de la Cruz Salas**

Visualización acelerada de flujos de mezclado advectivo-difusivo usando GPUs

Vol. 22 N. 5 Julio-Agosto 2012 13

U n i v e r s i d a d d e G u a n a j u a t o

can be determined numerically with a high degree of
accuracy. Another mixing study that is particularly
relevant for our analysis is the translating–rotating
mixer introduced by Finn and Cox [5]. This mixer con-
sists of a circular cylindrical vat inside which the fluid
is stirred by a rod with circular cross section. The rod
can be moved across the fluid and also can be rotated
around its own axis. The dynamics of this system is
similar to that of a vortex that moves describing a pre-
scribed orbit inside the container.

In the present work, it is studied a mixing flow pro-
duced by a time dependent wall temperature in pres-
ence of a body force. These conditions generate a vor-
tex of variable strength whose center moves around
the container. This mixing protocol can be interpreted
as a combination of a translating rotating mixer with
blinking vortices. These conditions generate chaotic
mixing flows where no moving walls are required.
Lagrangian tracking of particles along with the diffu-
sion of a concentration field are used to visualize and
analize the mixing properties of the flow. To handle
scalar diffusion on a moving substrate, the diffusive
strip method introduced by Meunier et al., [1] is used.
Several authors have addresed this problem with dif-
ferent point of view, see for example [6–9]. The diffu-
sive strip method requires too much time to calculate
the concentration diffusion. In this work, that time is
reduced using a Compute Unified Device Architecture
(CUDA) kernel and displaying the diffused scalar field
in real-time.

MATERIALS AND METHODS

Natural convection in a square cavity

Consider natural convection in a two dimensional
square, with the temperature of the left half of the up-
per wall cyclically reduced and the right half of the
bottom wall cyclically increased. Temperature chang-
es are out-phased. The two vertical walls are adia-
batic. An schematic representation of the geometry
of the cavity, the coordinate system and the bound-
ary conditions are shown in figure 1. The Boussinesq
approximation is assumed to be valid and the state
equation considered is ρ = ρ0(1 - β(T - T0)), where β is
the volumetric expansion coefficient and the subindex
o denotes a reference state. The governing equations
in terms of non-dimensional variables are:

(1)

,)Pr(= guuuu +∇⋅∇+−∇∇⋅+
∂
∂ p
t (2)

2= PrT T T
t
∂
+ ⋅∇ ∇

∂
u (3)

where g = (0. RaPrT). The spatial coordinates and time
are scaled with the length of the enclosure side, L and
L2/α respectively, where α is the thermal diffusivity.
The velocity vector u = (u, v) is scaled with α/L and the
pressure p is scaled with ρα2/L2. Here ρ represents the
fluid density. The temperature T is non-dimensiona-
lized by (T - Tm)/ΔT, ΔT = TH - TC and Tm = (TH + TC)/2.
TH and TC are the maximum and minimum wall tem-
peratures; TH = - TC. The Prandtl number is defined
by Pr = v/α, while the Rayleigh (Ra) numbers is Ra =
gβΔTL3/vα. Here, the acceleration of gravity is g and v
is the kinematic viscosity.

Figure 1. Square cavity geometry and boundary conditions

The origin of the coordinate system is taken at the
geometrical center of the cavity and the boundary con-
ditions are -see figure 1-:

for

for

for
for
for

and

and

and
and
and

, ,

for
for
for
for

for
for
for
for

The first cycle of the periodic functions f1 and f2 is
defined by the following expressions:

and

▪ Numerical solution

The conservation equations (1–3) were solved using
the software TUNAM [10–11], which is a C++ library
that implements the control volume method [12].
The QUICK [13] and SIMPLEC [14] techniques were

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 N. 5 Julio-Agosto 2012 14

used to deal with the advective terms and to solve the
coupled equations, respectively. The time integration
was accomplished with a backward Euler scheme and
the uniform discretization mesh contains 2562 control
volumes. In the examples presented here, they were
used Pr = 5 and Ra = 105. All results presented below
refer to the periodic motion that occurs once the initial
transient has died out.

The oscillatory wall temperature imposed using
the functions f1 and f2 yields the formation of alter-
nating ascending and descending thermal plumes in
regions close to the vertical walls. These structures
induce a global motion that displays an initial tran-
sient followed by a periodic motion. The evolution of
the temperature field inside the cavity is illustrated in
figures 2 (a–d) where the upward and downward ther-
mal plumes are shown at ϕ = π/2 and ϕ = 3π/2 respec-
tively. Here ϕ represents the phase angle of the cycle.

The ascending plume of hot fluid, and its interac-
tion with the top wall, generates a vortical structure in
the core of the cavity and, due to the periodic nature
of the formation of the plumes and their asymmetric
position, the center of the vortex defined by the point
with zero velocity describes a curve that roughly en-
circles the center of the cavity -see figure 2 (e–h). The
trajectory of the center of the vortex is also shown in
figure 2 and its instantaneous position is denoted by
the dots. The vortex moves with short spells of large
velocities followed by long spells of small velocities. In
the loop eyes, the vortex moves with the lowest speeds.

In summary, the overall effect of the alternating
cold and hot plumes, produced with the protocol dis-
played in figure 1 in one full cycle, is the generation
of a counterclockwise vortex with its center rotating
around the geometrical center of the cavity in an orbit
having more than two characteristic frequencies and
maximum intensity occurring twice each cycle. This is
the combination of blinking vortices with the translat-
ing–rotating mixer.

Advective–diffusive Mixing

The mixing efficiency of the flow described in section
Natural convection in a square cavity can be quali-
tatively assessed from the simultaneous Lagrangian
tracking of a set of N passive tracers in the flow, by
integrating the equation of motion

(4)

where xi is the position of the tracer i at instant t,
which has the velocity u(xi, t) given by the numerical
solution of the equations (1–3). Several integration
methods can be used to find the position of each trac-
er. In this work, it is used the fourth order Runge-
Kutta method.

Lagrangian tracking does not incorporate explicitly
diffusion effects. On the other hand, Eulerian meth-
ods deal with the markers concentration field c by
solving the partial differential equation:

2=c c c
t
∂
+ ⋅∇ Γ∇

∂
u (5)

in this latter equation Γ represents the tracers dif-
fusivity. In this work, the Diffusive Strip method in-
troduced by Meunier et al. is applied[1]: the equation
(5) is reduced to a simpler and analytically tractable
diffusion equation. Figure 3 shows and schematic de-
scription of an initial strip and its deformation after k
time steps. The striation thickness sk

i , defined as the
width of the strip at tracer xk

i , decreases with time and
can be calculated numerically by applying the conser-
vation of areas

Figure 2. Temperature and velocity fields for: (a) and (e) ϕ = 0; (b) and (f) ϕ = π/2;
(c) and (g) ϕ = π; and (d) and (h) ϕ = 3π/2. The line is the trajectory of the
center of the vortex and the dot is the instantaneous position of the center
of the vortex.

Vol. 22 N. 5 Julio-Agosto 2012 15

U n i v e r s i d a d d e G u a n a j u a t o

0 0= /k k
i i is s x x∆ ∆ . (6)

The time can be counted in units of the current diffusion time (sk
i)2/Γ

in such a way that the next equation is valid

2=
()

i
k
it s

τ∂ Γ
∂

. (7)

Now, using i and ñ as new variables, equation 5 can be simplified to
2

2=c c
nτ

∂ ∂
∂ ∂ �

. (8)

Both  and ñ will be functions of space, time, scalar diffusivity and of
the structure of the velocity field.

Figure 3. (a) A schematic strip defined by a set of tracers located at xi for i = 1,...,N with a striation thickness
s0. (b) A section of the strip deformed by the flow after k time steps.

 Now, assuming that the initial concentration distribution on the strip
has the Gaussian transverse profile c(n) = c0e-n2/(s0)2 for t = 0, then the solu-
tion to the equation (8) written in terms of n is

2 2
0 /()() = exp

1 41 4

k
k i

kk ii

c n sc n
ττ

  −    + +
. (9)

The calculation of the scalar field c can be done by adding small
Gaussian ellipses, of the form presented in equation (9), centered on each
tracer. It is convenient that the tracers be equally spaced. The final for-
mula to calculate c on a given position x of the domain at the instant k is

2 2
0

2 2
=1

ˆ[()] [()]ˆ/1,7726() = exp
() (1 4)1 4

N k k k k
k i i i i

k kki i ii

ncc
l s
σ

ττ

 − −  − −    ∆ + +
∑

x x x x
x , (10)

where ôk
i and n̂k

i are the unit vectors tangent and normal to the strip,
which define the orientation of the major and minor axis of the Gauss-
ian ellipses at instant k -see figure (3). The constant 1,7726 is due to the
overlapping of the ellipses -see [1] for more details about the diffusive
strip method.

▪ Algorithm for mixing analysis

The temperature T, pressure p,
and velocity u fields are obtained
numerically solving the governing
equations (1–3), as it was described
in section Numerical solutions.
Those fields were obtained on mesh
for each time step. In order to visu-
alize and analize the advective–dif-
fusive mixing of an strip immersed
in the flow, the u vector field as in-
put to the next algorithm was used.

• Initialization of the geometry
of the strip -see figure 3-

- Determine the initial posi-
tion x0

i of the tracers, for i =
1,...,N and define the lentgh
Δx0

i as the initial separation
between them.

- The shape of the original
strip is defined by connect-
ing the N tracers.

- Define the initial width of the
strip s0.

- Define a mesh of Nxf × NyF
nodes on the domain of
study to calculate the con-
centration c.

• FOR k = 0 TO NMAX DO

1. Read the velocity field uk de-
fined on the solution mesh.

2. FOR i = 1 TO N DO

i. Interpolate uk from the
mesh to the tracer posi-
tion xi.

ii. Integrate equation (4) to
obtain the new position
xk+1

i .

iii. Calculate sk
i using (6).

iv. Integrate equation (7) us-
ing sk

i as follows: k
i = k-1

i
+ Γδt/sk

i .

END FOR

3. Draw the deformed strip by
joining all the positions xk+1

i .

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 N. 5 Julio-Agosto 2012 16

4. FOR ix = 1 TO Nyf DO

. FOR jy = 1 TO Nxf DO

.. FOR i = 1 TO N DO

i. Calculate (xix,iy - xk
i), ôk

i and n̂k
i .

ii. Evaluate ck(xix,iy) using (10).

.. END FOR

. END FOR

END FOR

END FOR

In the above algorithm, the cal-
culation of the concentration, the
FOR loops in line 4, take the major
time of the complete process, due
to the fact that Nxf and Nyf need
to be 256 or greater to obtain good
accuracy. It can be observed that
the calculation of c for every point
on the mesh, defined by Nxf and
Nyf , is independent of each oth-
er. Therefore, these loops and the
visualization can be done in the
Graphics Processors Units (GPU)
directly. Results of this algorithm
for both CPU and GPU versions are
shown in figure 4.

RESULTS

Concentration calculation on the GPU

The conentration calculation ex-
hibits rich amount of data paral-
lelism in such a way that it can
be obtained a good speedup doing
this process in the GPU. It is used
CUDA C, the computer language
used to program NVIDIA's high
performance GPU, to implement a
special kernel to calculate c. In or-
der to represent the 2D grid of di-
mension Nxf × Nyf = 512 ×512,
a grid of 32 by 32 blocks, each
block of 16 by 16 threads, is ex-
ecuted. Each thread computes re-
sults for a single point in the grid.
This thread configuration gives a
high-performance balance between

the number of threads per block, the maximum number of blocks per mul-
tiprocessor in the chip and the number of per thread resources available.

The calculation of ck requires xk
i , sk

i and k
i . These quantities are

evaluated in lines 2(i), 2(ii) and 2(ii) respectively in the CPU. They
were transfered these values to the GPU own Dynamic Random
Access Memory (DRAM) using the typical commands cudaMalloc
and cudaMemcpy. No other variables are required, however, this data
transfer is done each time step. The next extract of the code shows the
basics to construct the arrays, transfer the data to the GPU and to call
the CUDA kernel

cudaMalloc((void**) &linec, 2*size);
cudaMalloc((void**) &s, size);

cudaMalloc((void**) &tao, size);
cudaMalloc((void**) &c, sizeC);
cudaMemcpy(linec, linec_h, 2*size, cudaMemcpyHostToDevice);
cudaMemcpy(s, s_h, size, cudaMemcpyHostToDevice);
cudaMemcpy(tao, tao_h, size, cudaMemcpyHostToDevice);
dim3 DimGrid(32, 32, 1);
dim3 DimBlock(16, 16, 1);

 concentracion<<<DimGrid, DimBlock>>>(pixels, c, linec, s, tao,
 line_size, deltaL0, Nxf);

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;

Notice that arrays for storing xk
i , sk

i and k
i (linec,s and tao respective-

ly), are inputs for the CUDA kernel and do not require to be transfered
back to CPU. The array c, which store the concentration, will be used for
the visualization in real-time.

The CUDA kernel comprises the two first FOR loops in line 4 of the
pseudocode presented in section Algorithm for mixing analysis. It is
just needed to determine the indexes for each thread as usual

Figure 4. Concentration c displayed on gray levels after 1 cycle of heating-cooling as described in section Natural convection
in a square cavity. (a) Result obtained with the CPU version of the algorithm: temperature contours and velocity
displayed along the distribution of c. The blue line shows the actual position of the tracers. (b) Result obtained with
the real-time visualization algorithm: distribution of c is displayed.

Then, it is possible to update every position of the array c, which will
contains the concentration, using i and j in a construction of the form
c[Nxf * j + i] += conc_eval(...).

Vol. 22 N. 5 Julio-Agosto 2012 17

U n i v e r s i d a d d e G u a n a j u a t o

▪ Speedup

The algorithms developed in this work were tested on
two different architectures: (a) PC with four proces-
sors to 2,00 GHz and 4 GB in RAM. This computer has
a GPU QUADRO FX 3800M with 128 Cores and 1 024
MB in RAM; (b) Server with 8 processors to 3,47 GHz
and 4GB in RAM. This server contains a TESLA C1060
with 240 Cores and 2 048 MB in RAM.

The data for the examples are: N = 1 000 (tracers),
Nxf = Nyf = 512, s0 = 0,01. The tracers were uniformly
located initially from x = 0,05 to x = 0,95, and y = 0,5.
It was runned the code for several cycles of the func-
tions f1 and f2 described in section Natural convec-
tion in a square cavity. However, only one cycle is
required to make an speedup analysis.

Tables 1 and 2 show the times in seconds for differ-
ent parts of the code. As can be seen, the concentration
calculation takes more than the 95 % of the total compu-
tation. It is also constatable that the kernel implemented
drastically reduce this time. For the QUADRO GPU, it
was got an speedup of 14X, while for the TESLA GPU
the speedup is roughly 62X. The time measurements
includes the memory transfer between CPU and GPU.

Besides, in the CPU case, it was needed to store
c in many files so the post-processing of the results
can be done. On the other hand, the CUDA version
use the c stored in the GPUs own RAM to visualize the
results immediately after its calculation -see section
Real-time visualization-, in such a way that it is not
needed to store this information in the hard disk.

The acceleration obtained using the GPU gives the
opportunity to combine the algorithms with a real-time
visualization process. Next section explain the combi-
nation of CUDA and OpenGL done for this purpose.

▪ Real-time visualization

Once the concentration has been calculated and
stored in the array c in the GPU memory, the advan-
tage of CUDA and OpenGL interoperability are taken
to visualize and analyze the results in real-time. First,
an OpenGL Pixel Buffer Object (PBO) is created and
memory space for a texture with the same dimension,
as the grid used to compute the concentration, is al-
located. Then the PBO was mapped to a CUDA device
memory pointer using cudaGLMapBufferObject().
This allows it to be passed to the CUDA kernel, which
will create an image representing the concentration
as gray levels (white representing zero concentration).
The PBO is then unmapped from the device pointer
so it can be used as a normal OpenGL texture using
glBindTexture().

For each iteration, the visualization is updated -see
figure 4. To create and manage an OpenGL context, it
has been using the modern GLFW [15] instead of GLUT,
which actually is outdated. In this way, it is possible
to have a better control over the graphics loop without
many changes to the previous non graphics code.

CONCLUSIONS

It has been demonstrated with an example that mixing
in cavities can be achieved by changing the tempera-
ture of vertical sidewalls in an appropriate manner,
taking advantage of the physical properties of the fluid
to generate the motion. This mixing method does not
require moving external parts. A very important as-
pect is that this problem requires a thorough analysis
of the dynamic behavior after hundreds of cycles. As
it has be shown, the computing of the concentration
could take several hours to complete a simple cycle.
However, using a very simple CUDA kernel and a real-
time visualization process, it is possible to study the
problem for several cycles in relative short times. Par-
ticularly, in this problem it has been able to analyze
16 cycles in less time than that required for 2 cycles
in the CPU version. This study is not simple, not only
for the extremely long computing times required, but
also because the error propagation may put very strin-
gent demands on the accuracy of the calculations. At
this time, it was used a simple precision version on
GPUs, but any inconsistencies compared to the CPU

Average Standard
deviation Total

Tracking 1,25e-05 3,535e-04 0,01
Concentration CPU 19,2922 5,379e-01 15 433,8
Concentration GPU 1,18278 3,868e-02 946,22
File reading 0,14240 9,939e-03 113,91
Total time CPU 15 741,883s
Total time GPU 1 123,002s

Total time CPU / Total time GPU = 14,017

Table 1.
Results for the GPU FX QUADRO FX 3800M. Times in seconds for different
parts of the code. One cycle of the process is measured.

Average Standard
deviation Total

Tracking 2,05e-03 4,375e-04 0,07
Concentration CPU 15,8654 3,677e-01 2 538,47
Concentration GPU 0,14025 1,341e-02 22,44
File reading 0,11200 5,806e-03 17,92
Total time CPU 2 576,929s
Total time GPU 41,448s

Total time CPU / Total time GPU = 62,172

Table 2.
Results for the TESLA C1060. Times in seconds for different parts of the code.
One cycle of the process is measured..

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 N. 5 Julio-Agosto 2012 18

version are found. Of course, for hundreds of cycles it
is needes to extrapolate our CUDA kernels to double
precision. Hopefully, a better performance on the most
actual GPUs (TESLA C2075 for example) is expected.

REFERENCES

[1] Meunier, P. and Villermaux, E. (2010). The diffusive strip method for scalar mix-
ing in two dimensions. J. Fluid Mech. 662: pp. 134-172.

[2] Ottino, J. M. (1989). The kinematics of mixing: stretching, chaos and transport.
Cambridge University Press.

[3] Ottino, J. M. (1990). Mixing, Chaotic Advection, and Turbulence. Annu. Rev.
Fluid Mech. 22: pp. 207–253.

[4] Aref, H. (1984). Stirring by chaotic advection. J. Fluid Mech. 143: pp. 1–21.

[5] Finn, M. D. and Cox, S. M. (2001). J. Engng Math. 41: pp. 75–99.

[6] Sukhatme, J. and Pierrehumbert, R. T. (2002). Decay of passive scalars under
the action of single scale smooth velocity fields in bounded two-dimensional
domains: From non-selfsimilar probability distribution functions to self-similar
eigenmodes. Phys. Rev. E 66.

[7] Fereday, D. R. and Haynes, P. H. (2004). Scalar decay in two-dimensional
chaotic advection and batchelor-regime turbulence. Phys. Fluids 16(12): pp
4359-4370.

[8] Perugini, D., Ventura, G., Petrelli, M. and Poli, G. (2004). Kinematic significance
of morphological structures generated by mixing of magmas: a case study
from salina island (southern italy). Earth and Planetary Sci. Lett. 222: pp.
1051-1066.

[9] Shankar, P. N. and Kidambi, R. (2009). Mixing in internally stirred flows. Proc.
Roy. Soc. A 465: pp. 1271-1290.

[10] de la Cruz, L. M. (2005). Parallel computing for solving the balance equations
in turbulent flow. PhD thesis. Universidad Nacional Autónoma de México
(UNAM). Mexico.

[11] de la Cruz, L. M. and Ramos. E. (2012). General Template Units for the Finite Vol-
ume Method in Box-shaped Domains. Trans. on Math. Software. To be printed.

[12] Versteeg, H. and Malalasekera, W. (1995). An introduction to computational
fluid dynamics: The Finite volume method. Longman.

[13] Leonard, B. P. (1979). A stable and accurate conevctive modelling procedure
based on quadratic upstream interpolation. Comp. Meth. in App. Mech. and
Engineering 19: pp. 59–98.

[14]. Doormal, J. V and Raithby, G. D. (1984). Enhancements of the simple method
for predicting incompressible fuid flows. Num. Heat Transfer 7: pp. 147–163

[15] Geelnard, Marcus and Berglund, Camilla GLFW: User Guide, API version
2.7.3, http://www.glfw.org/, consulted: 13 February 2012

