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ABSTRACT

In this article a strategy to accelerate the simulation and visualization of combined ad-
vective–diffusive mixing of a contaminant inside a square cavity with time-dependent 
boundary–conditions is presented. No moving walls are required to mix the fluid, but 
natural convection by periodic temperatures on opposite walls. A contaminant will diffuse 
asymptotically to uniform concentration. Advective mixing is evaluated with Lagrangian 
tracking and diffusive mixing is calculated with the Diffusive Strip method. That calcu-
lation requires hours of CPU time due to the large amount of numerical operations and 
the precision requested but it can be directly translated to a Graphics Processors Unit 
(GPU), improving the performance by orders of magnitude. The algorithms implemented 
in Compute Unified Device Architecture (CUDA) and an analysis of the speed achieved 
are presented. The visualization of the diffusion process is done simultaneously using the 
data stored in the GPU memory, which allows to make a real-time analysis of the mixing.

 RESUMEN

Se presenta una estrategia para acelerar la simulación y visualización de mezclado advecti-
vo–difusivo de un contaminante dentro de una cavidad cuadrada con condiciones de frontera 
dependientes del tiempo. No se requieren paredes móviles para mezclar el fluido, sino la con-
vección natural por temperaturas periódicas en paredes opuestas. Un contaminante se diluye 
asintóticamente hasta una concentración uniforme. El mezclado advectivo es evaluado con 
rastreo lagrangiano y el mezclado difusivo con el método Diffusive Strip. Este cálculo requiere 
horas de tiempo CPU debido a la gran cantidad de operaciones numéricas y la precisión re-
querida, pero puede ser directamente transportado a una Unidad de Procesamiento Gráfico 
(GPU, por su acrónimo en inglés), mejorando así el rendimiento en órdenes de magnitud. 
Se presentan los algoritmos implementados en la Arquitectura de Cálculo Paralelo (CUDA, 
en inglés) y un análisis de la velocidad lograda. La visualización del proceso de difusión es 
simultánea usando los datos almacenados en la memoria de la GPU, lo que permite hacer un 
análisis en tiempo real del mezclado.
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INTRODUCTION

Mixing has been studied during centuries and, in particular in the past few 
decades, there has been a recent surge of studies of fundamental properties 
of this study area due to its applications in manufacturing, food, pharmacol-
ogy and other industries. The literature reporting progress in the field is large 
and the interested reader is referred to monographs and review articles for a 
comprehensive survey, for instance [2] and [3]. Many of the recent advances 
are the result of computerized measurement and simulation techniques that 
are now ubiquitous throughout the world. A pioneer investigation on the sub-
ject is the blinking vortices flow proposed by Aref [4]. This mixing flow is the 
two dimensional motion of an incompressible inviscid fluid, generated by two 
corrotating point vortices fixed in space that are switched alternatively on 
and off. This flow can be described analytically and mixing can be illustrated 
by Lagrangian tracking of markers, whose position of markers at all times 
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can be determined numerically with a high degree of 
accuracy. Another mixing study that is particularly 
relevant for our analysis is the translating–rotating 
mixer introduced by Finn and Cox [5]. This mixer con-
sists of a circular cylindrical vat inside which the fluid 
is stirred by a rod with circular cross section. The rod 
can be moved across the fluid and also can be rotated 
around its own axis. The dynamics of this system is 
similar to that of a vortex that moves describing a pre-
scribed orbit inside the container.

In the present work, it is studied a mixing flow pro-
duced by a time dependent wall temperature in pres-
ence of a body force. These conditions generate a vor-
tex of variable strength whose center moves around 
the container. This mixing protocol can be interpreted 
as a combination of a translating rotating mixer with 
blinking vortices. These conditions generate chaotic 
mixing flows where no moving walls are required. 
Lagrangian tracking of particles along with the diffu-
sion of a concentration field are used to visualize and 
analize the mixing properties of the flow. To handle 
scalar diffusion on a moving substrate, the diffusive 
strip method introduced by Meunier et al., [1] is used. 
Several authors have addresed this problem with dif-
ferent point of view, see for example [6–9]. The diffu-
sive strip method requires too much time to calculate 
the concentration diffusion. In this work, that time is 
reduced using a Compute Unified Device Architecture 
(CUDA) kernel and displaying the diffused scalar field 
in real-time.

MATERIALS AND METHODS

Natural convection in a square cavity

Consider natural convection in a two dimensional 
square, with the temperature of the left half of the up-
per wall cyclically reduced and the right half of the 
bottom wall cyclically increased. Temperature chang-
es are out-phased. The two vertical walls are adia-
batic. An schematic representation of the geometry 
of the cavity, the coordinate system and the bound-
ary conditions are shown in figure 1. The Boussinesq 
approximation is assumed to be valid and the state 
equation considered is ρ = ρ0(1 - β(T - T0)), where β is 
the volumetric expansion coefficient and the subindex 
o denotes a reference state. The governing equations 
in terms of non-dimensional variables are: 

(1)

,)Pr(= guuuu +∇⋅∇+−∇∇⋅+
∂
∂ p
t (2)

2= PrT T T
t
∂
+ ⋅∇ ∇

∂
u (3)

where g = (0. RaPrT ). The spatial coordinates and time 
are scaled with the length of the enclosure side, L and 
L2/α respectively, where α is the thermal diffusivity. 
The velocity vector u = (u, v) is scaled with α/L and the 
pressure p is scaled with ρα2/L2. Here ρ represents the 
fluid density. The temperature T is non-dimensiona-
lized by (T - Tm)/ΔT, ΔT = TH - TC and Tm  = (TH + TC)/2. 
TH and TC are the maximum and minimum wall tem-
peratures; TH = - TC. The Prandtl number is defined 
by  Pr = v/α, while the Rayleigh (Ra) numbers is Ra = 
gβΔTL3/vα. Here, the acceleration of gravity is g and v 
is the kinematic viscosity.

Figure 1. Square cavity geometry and boundary conditions

The origin of the coordinate system is taken at the 
geometrical center of the cavity and the boundary con-
ditions are -see figure 1-:
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The first cycle of the periodic functions f1 and f2 is 
defined by the following expressions:

and

▪ Numerical solution

The conservation equations (1–3) were solved using 
the software TUNAM [10–11], which is a C++ library 
that implements the control volume method [12]. 
The QUICK [13] and SIMPLEC [14] techniques were 
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used to deal with the advective terms and to solve the 
coupled equations, respectively. The time integration 
was accomplished with a backward Euler scheme and 
the uniform discretization mesh contains 2562 control 
volumes. In the examples presented here, they were 
used Pr = 5 and Ra = 105. All results presented below 
refer to the periodic motion that occurs once the initial 
transient has died out.

The oscillatory wall temperature imposed using 
the functions f1 and f2 yields the formation of alter-
nating ascending and descending thermal plumes in 
regions close to the vertical walls. These structures 
induce a global motion that displays an initial tran-
sient followed by a periodic motion. The evolution of 
the temperature field inside the cavity is illustrated in 
figures 2 (a–d) where the upward and downward ther-
mal plumes are shown at ϕ = π/2  and ϕ = 3π/2 respec-
tively. Here ϕ represents the phase angle of the cycle.

The ascending plume of hot fluid, and its interac-
tion with the top wall, generates a vortical structure in 
the core of the cavity and, due to the periodic nature 
of the formation of the plumes and their asymmetric 
position, the center of the vortex defined by the point 
with zero velocity describes a curve that roughly en-
circles the center of the cavity -see figure 2 (e–h). The 
trajectory of the center of the vortex is also shown in 
figure 2 and its instantaneous position is denoted by 
the dots. The vortex moves with short spells of large 
velocities followed by long spells of small velocities. In 
the loop eyes, the vortex moves with the lowest speeds.

In summary, the overall effect of the alternating 
cold and hot plumes, produced with the protocol dis-
played in figure 1 in one full cycle, is the generation 
of a counterclockwise vortex with its center rotating 
around the geometrical center of the cavity in an orbit 
having more than two characteristic frequencies and 
maximum intensity occurring twice each cycle. This is 
the combination of blinking vortices with the translat-
ing–rotating mixer.

Advective–diffusive Mixing

The mixing efficiency of the flow described in section 
Natural convection in a square cavity can be quali-
tatively assessed from the simultaneous Lagrangian 
tracking of a set of N passive tracers in the flow, by 
integrating the equation of motion

(4)

where xi is the position of the tracer i at instant t, 
which has the velocity u(xi, t) given by the numerical 
solution of the equations (1–3). Several integration 
methods can be used to find the position of each trac-
er. In this work, it is used the fourth order Runge-
Kutta method.

Lagrangian tracking does not incorporate explicitly 
diffusion effects. On the other hand, Eulerian meth-
ods deal with the markers concentration field c by 
solving the partial differential equation:

2=c c c
t
∂
+ ⋅∇ Γ∇

∂
u (5)

in this latter equation Γ represents the tracers dif-
fusivity. In this work, the Diffusive Strip method in-
troduced by Meunier et al. is applied[1]: the equation 
(5) is reduced to a simpler and analytically tractable 
diffusion equation. Figure 3 shows and schematic de-
scription of an initial strip and its deformation after k 
time steps. The striation thickness sk

i , defined as the 
width of the strip at tracer xk

i , decreases with time and 
can be calculated numerically by applying the conser-
vation of areas

Figure 2. Temperature and velocity fields for: (a) and (e) ϕ = 0; (b) and (f) ϕ = π/2; 
(c) and (g) ϕ = π; and (d) and (h) ϕ = 3π/2. The line is the trajectory of the 
center of the vortex and the dot is the instantaneous position of the center 
of the vortex.
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0 0= /k k
i i is s x x∆ ∆ . (6)

The time can be counted in units of the current diffusion time (sk
i )2/Γ 

in such a way that the next equation is valid

2=
( )

i
k
it s

τ∂ Γ
∂

. (7)

Now, using i and ñ as new variables, equation 5 can be simplified to
2

2=c c
nτ

∂ ∂
∂ ∂ �

. (8)

Both  and ñ will be functions of space, time, scalar diffusivity and of 
the structure of the velocity field.

Figure 3. (a) A schematic strip defined by a set of tracers located at xi for i = 1,...,N  with a striation thickness 
s0. (b) A section of the strip deformed by the flow after k time steps.

 Now, assuming that the initial concentration distribution on the strip 
has the Gaussian transverse profile c(n) = c0e-n2/(s0)2 for t = 0, then the solu-
tion to the equation (8) written in terms of n is

2 2
0 /( )( ) = exp

1 41 4

k
k i

kk ii

c n sc n
ττ

  −    + +
. (9)

The calculation of the scalar field c can be done by adding small 
Gaussian ellipses, of the form presented in equation (9), centered on each 
tracer. It is convenient that the tracers be equally spaced. The final for-
mula to calculate c on a given position x of the domain at the instant k is

2 2
0

2 2
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( ) (1 4 )1 4

N k k k k
k i i i i
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 − −  − −    ∆ + +
∑

x x x x
x , (10)

where ôk
i  and n̂k

i  are the unit vectors tangent and normal to the strip, 
which define the orientation of the major and minor axis of the Gauss-
ian ellipses at instant k -see figure (3). The constant 1,7726 is due to the 
overlapping of the ellipses -see [1] for more details about the diffusive 
strip method.

▪  Algorithm for mixing analysis

The temperature T, pressure p, 
and velocity u fields are obtained 
numerically solving the governing 
equations (1–3), as it was described 
in section Numerical solutions. 
Those fields were obtained on mesh 
for each time step. In order to visu-
alize and analize the advective–dif-
fusive mixing of an strip immersed 
in the flow, the u vector field as in-
put to the next algorithm was used.

• Initialization of the geometry 
of the strip -see figure 3-

- Determine the initial posi-
tion x0

i  of the tracers, for i = 
1,...,N and define the lentgh 
Δx0

i  as the initial separation 
between them. 

- The shape of the original 
strip is defined by connect-
ing the N tracers. 

- Define the initial width of the 
strip s0. 

- Define a mesh of Nxf × NyF 
nodes on the domain of 
study to calculate the con-
centration c. 

• FOR k = 0 TO NMAX DO 

1. Read the velocity field uk de-
fined on the solution mesh. 

2. FOR i = 1 TO N DO 

i. Interpolate uk from the 
mesh to the tracer posi-
tion xi. 

ii. Integrate equation (4) to 
obtain the new position 
xk+1

i .

iii. Calculate sk
i  using (6).

iv. Integrate equation (7) us-
ing sk

i  as follows: k
i  = k-1

i
+ Γδt/sk

i . 

END FOR

3. Draw the deformed strip by 
joining all the positions xk+1

i . 
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4. FOR ix = 1 TO Nyf DO 

. FOR jy = 1 TO Nxf DO 

.. FOR i = 1 TO N DO

i. Calculate (xix,iy - xk
i ), ôk

i  and n̂k
i .

ii. Evaluate ck(xix,iy) using (10). 

.. END FOR 

. END FOR 

END FOR 

END FOR 

In the above algorithm, the cal-
culation of the concentration, the 
FOR loops in line 4, take the major 
time of the complete process, due 
to the fact that Nxf  and  Nyf need 
to be 256 or greater to obtain good 
accuracy. It can be observed that 
the calculation of c for every point 
on the mesh, defined by Nxf  and 
Nyf , is independent of each oth-
er. Therefore, these loops and the 
visualization can be done in the 
Graphics Processors Units (GPU) 
directly. Results of this algorithm 
for both CPU and GPU versions are 
shown in figure 4.

RESULTS

Concentration calculation on the GPU

The conentration calculation ex-
hibits rich amount of data paral-
lelism in such a way that it can 
be obtained a good speedup doing 
this process in the GPU. It is used 
CUDA C, the computer language 
used to program NVIDIA's high 
performance GPU, to implement a 
special kernel to calculate c. In or-
der to represent the 2D grid of di-
mension Nxf ×  Nyf = 512 ×512, 
a grid of 32 by 32 blocks, each 
block of 16 by 16 threads, is ex-
ecuted. Each thread computes re-
sults for a single point in the grid. 
This thread configuration gives a 
high-performance balance between 

the number of threads per block, the maximum number of blocks per mul-
tiprocessor in the chip and the number of per thread resources available.

The calculation of ck requires xk
i , sk

i  and k
i . These quantities are 

evaluated in lines 2(i), 2(ii) and 2(ii) respectively in the CPU. They 
were transfered these values to the GPU own Dynamic Random 
Access Memory (DRAM) using the typical commands cudaMalloc 
and cudaMemcpy. No other variables are required, however, this data 
transfer is done each time step. The next extract of the code shows the 
basics to construct the arrays, transfer the data to the GPU and to call 
the CUDA kernel

cudaMalloc((void**) &linec, 2*size); 
cudaMalloc((void**) &s, size); 

 

cudaMalloc((void**) &tao, size); 
cudaMalloc((void**) &c, sizeC); 
cudaMemcpy(linec, linec_h, 2*size, cudaMemcpyHostToDevice); 
cudaMemcpy(s, s_h, size, cudaMemcpyHostToDevice); 
cudaMemcpy(tao, tao_h, size, cudaMemcpyHostToDevice); 
dim3 DimGrid(32, 32, 1);
dim3 DimBlock(16, 16, 1); 

 concentracion<<<DimGrid, DimBlock>>>(pixels, c, linec, s, tao,
     line_size, deltaL0, Nxf); 

int i = blockIdx.x * blockDim.x + threadIdx.x;  
int j = blockIdx.y * blockDim.y + threadIdx.y;  

Notice that arrays for storing xk
i , sk

i  and k
i  (linec,s and tao respective-

ly), are inputs for the CUDA kernel and do not require to be transfered 
back to CPU. The array c, which store the concentration, will be used for 
the visualization in real-time.

The CUDA kernel comprises the two first FOR loops in line 4 of the 
pseudocode presented in section Algorithm for mixing analysis. It is 
just needed to determine the indexes for each thread as usual

Figure 4. Concentration c displayed on gray levels after 1 cycle of heating-cooling as described in section Natural convection 
in a square cavity. (a) Result obtained with the CPU version of the algorithm: temperature contours and velocity 
displayed along the distribution of c. The blue line shows the actual position of the tracers. (b) Result obtained with 
the real-time visualization algorithm: distribution of c is displayed.

Then, it is possible to update every position of the array c, which will 
contains the concentration, using i and j in a construction of the form 
c[Nxf * j + i] += conc_eval(...).
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▪ Speedup

The algorithms developed in this work were tested on 
two different architectures: (a) PC with four proces-
sors to 2,00 GHz and 4 GB in RAM. This computer has 
a GPU QUADRO FX 3800M with 128 Cores and 1 024 
MB in RAM; (b) Server with 8 processors to 3,47 GHz 
and 4GB in RAM. This server contains a TESLA C1060 
with 240 Cores and 2 048 MB in RAM.

The data for the examples are: N = 1 000 (tracers),  
Nxf = Nyf = 512, s0 = 0,01. The tracers were uniformly 
located initially from x = 0,05 to x = 0,95, and y = 0,5. 
It was runned the code for several cycles of the func-
tions f1 and f2 described in section Natural convec-
tion in a square cavity. However, only one cycle is 
required to make an speedup analysis.

Tables 1 and 2 show the times in seconds for differ-
ent parts of the code. As can be seen, the concentration 
calculation takes more than the 95 % of the total compu-
tation. It is also constatable that the kernel implemented 
drastically reduce this time. For the QUADRO GPU, it 
was got an speedup of 14X, while for the TESLA GPU 
the speedup is roughly 62X. The time measurements 
includes the memory transfer between CPU and GPU.

Besides, in the CPU case, it was needed to store 
c in many files so the post-processing of the results 
can be done. On the other hand, the CUDA version 
use the c stored in the GPUs own RAM to visualize the 
results immediately after its calculation -see section 
Real-time visualization-, in such a way that it is not 
needed to store this information in the hard disk.

The acceleration obtained using the GPU gives the 
opportunity to combine the algorithms with a real-time 
visualization process. Next section explain the combi-
nation of CUDA and OpenGL done for this purpose.

▪ Real-time visualization

Once the concentration has been calculated and 
stored in the array c in the GPU memory, the advan-
tage of CUDA and OpenGL interoperability are taken 
to visualize and analyze the results in real-time. First, 
an OpenGL Pixel Buffer Object (PBO) is created and 
memory space for a texture with the same dimension, 
as the grid used to compute the concentration, is al-
located. Then the PBO was mapped to a CUDA device 
memory pointer using cudaGLMapBufferObject(). 
This allows it to be passed to the CUDA kernel, which 
will create an image representing the concentration 
as gray levels (white representing zero concentration). 
The PBO is then unmapped from the device pointer 
so it can be used as a normal OpenGL texture using 
glBindTexture().

For each iteration, the visualization is updated -see 
figure 4. To create and manage an OpenGL context, it 
has been using the modern GLFW [15] instead of GLUT, 
which actually is outdated. In this way, it is possible 
to have a better control over the graphics loop without 
many changes to the previous non graphics code.

CONCLUSIONS

It has been demonstrated with an example that mixing 
in cavities can be achieved by changing the tempera-
ture of vertical sidewalls in an appropriate manner, 
taking advantage of the physical properties of the fluid 
to generate the motion. This mixing method does not 
require moving external parts. A very important as-
pect is that this problem requires a thorough analysis 
of the dynamic behavior after hundreds of cycles. As 
it has be shown, the computing of the concentration 
could take several hours to complete a simple cycle. 
However, using a very simple CUDA kernel and a real-
time visualization process, it is possible to study the 
problem for several cycles in relative short times. Par-
ticularly, in this problem it has been able to analyze 
16 cycles in less time than that required for 2 cycles 
in the CPU version. This study is not simple, not only 
for the extremely long computing times required, but 
also because the error propagation may put very strin-
gent demands on the accuracy of the calculations. At 
this time, it was used a simple precision version on 
GPUs, but any inconsistencies compared to the CPU 

Average Standard 
deviation  Total

Tracking  1,25e-05  3,535e-04  0,01
Concentration CPU  19,2922  5,379e-01  15 433,8
Concentration GPU  1,18278  3,868e-02  946,22
File reading  0,14240  9,939e-03  113,91 
Total time CPU  15 741,883s 
Total time GPU  1 123,002s 

Total time CPU / Total time GPU = 14,017

Table 1. 
Results for the GPU FX QUADRO FX 3800M. Times in seconds for different 
parts of the code. One cycle of the process is measured. 

Average Standard 
deviation  Total

Tracking  2,05e-03  4,375e-04  0,07
Concentration CPU  15,8654  3,677e-01  2 538,47
Concentration GPU  0,14025  1,341e-02  22,44
File reading  0,11200  5,806e-03  17,92
Total time CPU  2 576,929s 
Total time GPU  41,448s 

Total time CPU / Total time GPU = 62,172

Table 2. 
Results for the TESLA C1060. Times in seconds for different parts of the code. 
One cycle of the process is measured.. 
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version are found. Of course, for hundreds of cycles it 
is needes to extrapolate our CUDA kernels to double 
precision. Hopefully, a better performance on the most 
actual GPUs (TESLA C2075 for example) is expected.
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