
U n i v e r s i d a d  d e  G u a n a j u a t o

Vol. 22 No. 7 Octubre-Noviembre 2012     14

Solution of finite element problems using hybrid 
parallelization with MPI and OpenMP
Solución de problemas de elemento finito utilizando paralelización híbrida 
con MPI y OpenMP

Keywords:
Parallel computing; sparse matrices; linear 
solvers; partial differential equations.

Palabras clave:  
Cómputo en paralelo; matrices dispersas; 
solvers lineales; ecuaciones diferenciales 
parciales.

aBSTRaCT

The Finite Element Method (FEM) is used to solve problems like solid deformation and 
heat diffusion in domains with complex geometries. This kind of geometries requires dis-
cretization with millions of elements; this is equivalent to solve systems of equations with 
sparse matrices and tens or hundreds of millions of variables. The aim is to use computer 
clusters to solve these systems. The solution method used is Schur substructuration. 
Using it is possible to divide a large system of equations into many small ones to solve 
them more efficiently. This method allows parallelization. MPI (Message Passing Interface) 
is used to distribute the systems of equations to solve each one in a computer of a cluster. 
Each system of equations is solved using a solver implemented to use OpenMP as a local 
parallelization method.

RESUMEN

El Método de Elemento Finito (FEM, por sus siglas en inglés) es utilizado para resolver 
problemas como la deformación de sólidos o la difusión de calor en dominios con geometrías 
complejas. Este tipo de geometrías requiere de discretizaciones con millones de elementos, 
lo que equivale a resolver sistemas de ecuaciones con matrices dispersas de decenas o cien-
tos de millones de variables. La meta es utilizar clústeres de computadoras para resolver 
estos sistemas. El método de solución utilizado es la subestructuración de Schur. Utilizando 
ésta es posible dividir un sistema grande de ecuaciones en muchos pequeños para resolv-
erse más eficientemente. Este método permite la paralelización. La MPI (Message Passing 
Interface, Interfaz para Paso de Mensajes) es utilizada para distribuir los sistemas de ecu-
aciones a resolver en cada computadora del cluster. Cada sistema de ecuaciones es resuelta 
utilizando un solver implementado con OpenMP como método de paralelización local.
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INTRODUCTION

Solid deformation

It is necessary to calculate linear inner displacements of a solid resulting 
from forces or displacements imposed on its boundaries. The displacement 
vector inside the domain is defined as

( )
( )
( )
( )zy,x,w

zy,x,v
zy,x,u

= ;zy,x,u

the strain vector ε is
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E

where u is the displacement vector, ε is the stain and    
 is the stress. D is called “the constitutive matrix”. A 
differential operator E is defined.

Stress vector is defined as 

where x, y and z are normal stresses; x, x and x are 
tangential stresses. Stress and strain are related by

, (1)

D is called “the constitutive matrix” and depends on 
Young moduli and Poisson coefficients characteristic 
of media.

Solution is found using the Finite Element Meth-
od (FEM) with the Galerkin weighted residuals. This 
means that the integral problem in each element is 
solved using a weak formulation. The integral expres-
sion of equilibrium in elasticity problems can be ob-
tained using the principle of virtual work [1]:

,σ (2)

here b, t and q are the vectors of mass, boundary and 
punctual forces respectively. The weight functions for 
weak formulation are chosen to be the interpolation 
functions of the element; these are Ni, i = 1,...,M. M is 
the number of nodes of the element and ui is the coor-
dinate of the ith node, so it can be had that

(3)

Using (3), it is possible to rewrite (1) as

or in a more compact form

.u

Now it can be expressed (6) as  = DBu and (2) by

f f

(4)

By integrating (4), it is obtained a system of equa-
tions for each element: eeeee q+f+f=uK tb . All systems of 
equations are assembled in a global system of equations:

Ku = f.
K is called “the stiffness matrix”; if enough boundary 
conditions are applied, it will be by construction Sym-
metric Positive Definite (SPD). Also it is sparse with 
storage requirements of order O (n), where n is the to-
tal number of nodes in the domain. By solving this 
system, they will be obtained the displacements of all 
nodes in the domain.

Heat diffusion

The other problem to solve is the stationary case of the 
heat diffusion. It is modeled using the Poisson equation:

(5)

where (x, y, z) is the unknown temperature distributed 
on the domain. Now, it is time to define the flux vector

Boundary conditions could be Dirichlet  
en , or Neumann  en .

In complex domains, it is complicated to obtain a so-
lution (x, y) that satisfies (5). It is necessary to look for 
an approximate solution  that satisfies  
in the sense of a weighted integral, like

where W = W(x, y) is a weighting function.

Reformulating the problem as a weighted integral

.
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Integrating by parts

,

using the definition of flux vector

.

There are several ways to select weight functions W (x, y) when ele-
ment equations are built. It was used the Galerkin method; in this one, 
the shape functions are used as weight functions

.

MaTERIaLS aND METHODS

Schur complement method

This is a domain decomposition method with no overlapping [2]. The ba-
sic idea is to split a large system of equations into smaller systems that 
can be solved independently in different computers in parallel. 

Figure 1. Finite element domain (left), domain discretization (center), partitioning (right).

Figure 2. Substructuring example with three partitions.

This paper starts with a system of equations resulting from a finite 
element problem

Kd = f, (6)

where K is a symmetric positive definite matrix of size n×n. If we divide 
the geometry into p partitions, the idea is to split the workload to let each 
partition to be handled by a computer in the cluster.

For this, it is useful to arrange (reorder variables) of the system of 
equations to have the following form

(7)

The superscript II denotes entries that capture the relationship between 
nodes inside a partition. BB is used to indicate entries in the matrix that 
relate nodes on the boundary. Finally, IB and BI are used for entries with 
values dependent of nodes in the boundary and nodes inside the partition.

Thus, the system can be separ- 
ated in p different systems:

d

d , i = 1...p. For 
each partition, i the vector of un-
knowns dI

i  as

d d (8)

After applying Gaussian elimina-
tion by blocks on (7), the reduced 
system of equations becomes 

-

- d (9)

Once the vector dB is computed 
using (9), they are calculated the 
internal unknowns dI

i  with (8). It 
is not necessary to calculate the 
inverse in (9). In order to define 

 and calculate it 
[3], it was proceeded column by 
column using an extra vector t, 
and solving for c = 1...n

, (10)

(note that many [ ]ci
IBK  are null). 

Next, BB
iK  can be completed with 
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The definition of  comes next. In this 
case, only one system has to be solved

(11)

and then 

Each  and  holds the contribution of each parti-
tion to (9). This can be written as

- (12)

Once (12) is solved, they can calculated the inner re-
sults of each partition using (8).

Since  is sparse and has to be solved many times 
in (10), a efficient way to proceed is to use a Cholesky 
factorization of . To reduce memory usage and in-
crease speed, a sparse Cholesky factorization has to 
be implemented. This method is explained below.

In case of (12), BBK  is sparse but BB
iK  is not. To solve 

this system of equations, a sparse version of conjugate 
gradient was implemented. The matrix  
is not assembled, but maintained distributed. In the 
conjugate gradient method is only important to know 
how to multiply the matrix by the descent direction. 
In the present implementation, each BB

iK  is maintained 
in their respective computer, the multiplication is done 
in a distributed way and the resulted vector is formed 
with contributions from all partitions. To improve the 
convergence of the conjugate gradient, a Jacobi pre-
conditioned is used. This algorithm is described below.

One benefit of this method is that the condition num-
ber of the system is reduced when solving (12), this de-
creases the number of iterations needed to converge.

Sparse matrices

Considering all elements, it was assembled a system of 
equations (with certain Dirichlet or Neumann bound-
ary conditions) to solve a linear system of equations 
Ax  = b. Relation between adjacent nodes is captured 
as entries in a matrix, because a node has adjacency 
with only a few others. The resulting matrix has a very 
sparse structure.

Figure 3. Discretized domain (mesh) and its matrix representation.

In this instance, it is turn to define the notation 
η(A) (it indicates the number of non zero entries of 
A). For example, A∈IR556×556 has 309 136 entries with 
η(A) = 1 810, this means that only the 0,58% of the 
entries are non zero.

Figure 4. Black dots indicates a non zero entry in the matrix.

In finite element problems, all matrices have sym-
metric structure, and depending on the problem sym-
metric values or not.

▫ Matrix storage

An efficient method to store and operate matrices of 
this kind of problems is the Compressed Row Storage 
(CRS) [4]. This method is suitable when it is wanted to 
access entries of each row of a matrix A sequentially.

For each row i of A, they will be had two vectors: a 
vector vA

i  that will contain the non zero values of the row 
and a vector jA

i  with their respective column indexes. This 
is an example of a matrix A and its CRS representation

The size of the row will be denoted by | |Aiv  or by | |Aij . 
Therefore, the q th non zero value of the row i of A will be 
denoted by ( )qA

iv  and the index of this value as ( )qA
ij , with 

q = 1,...,| |Aiv .

If the entries of each row are not ordered, then to 
search an entry with certain column index will have a 
cost of ( )A

ivO  in the worst case. To improve it, it will be 
kept vA

i  and jA
i  ordered by the indexes jA

i . Then, it is pos-
sible to perform a binary algorithm to have an search 
cost of ( ).A

ivO 2log

The main advantage of using CRS is when data in 
each row is stored continuously and accessed in a se-
quential way. This is important because an efficient 
processor cache usage will be had [5].
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Figure 5. Left: non-zero entries of A. Right: non-zero entries of L (Cholesky fac-
torization of A).

Figure 6. Left: non-zero entries of reordered A. Right: non-zero entries of L.

Cholesky factorization for sparse matrices

The cost of using Cholesky factorization A = LLT is 
expensive if the researcher wants to solve systems of 
equations with full matrices. But, for sparse matrices, 
he could reduce this cost significantly if he uses reor-
dering strategies and store factor matrices using CRS 
identifying non zero entries using symbolic factoriza-
tion. With these strategies, he could maintain memory 
and time requirements near to O (n). Also Cholesky 
factorization could be implemented in parallel.

Formulae to calculate L entries are

, for i>j;    (13)

.     (14)

▫ Reordering rows and columns

By reordering the rows and columns of a SPD matrix 
A, it is possible to reduce the fill-in (the number of 
non-zero entries) of L. The next images show the non 
zero entries of A∈IR556×556 and the non zero entries of 
its Cholesky factorization L.

The number of non zero entries of A is η(A) = 1 810 
and for L is η(L) = 8 729. The next images show A with 
an efficient reordering by rows and columns.

By reordering, there is a new factorization with 
η(L ) = 3 215, reducing the fill in to 0,368 of the size of 
the not reordered version. Both factorizations allow 
solving the same system of equations.

The most common reordering heuristic to reduce 
fill in is the minimum degree algorithm, the basic ver-
sion is presented in [6]:

More advanced versions of this algorithm can be 
consulted in [7].

There are more complex algorithms that perform bet-
ter in terms of time and memory requirements; the nest-
ed dissection algorithm developed by Karypis and Kumar 
[8] included in METIS library gives very good results.

▫ Symbolic Cholesky factorization

This algorithm identifies non zero entries of L. A deep 
explanation could be found in [9].

For an sparse matrix A, it is defined

a ,
as the set of non zero entries of column j of the strictly 
lower triangular part of A. In similar way, for matrix   
it is defined the set
l

Also, it is possible to use sets that define sets rj and 
that will contain columns of L which structure will af-
fect the column j of L. The algorithm is:

l

l l l

l l

r

r

r r

a
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For the next example matrix column 2, a2 and l2  
will be:

Figure 7. Example matrix showing how a2 and  l2 are formed.
This algorithm is very efficient. Complexity in time 

and memory usage has an order of O(η(L)). Symbolic 
factorization could be seen as a sequence of elimina-
tion graphs [6].

▫ Filling entries in parallel

Once non zero entries are determined, (13) and 
(14) can be rewritten as

 for i > j;

∑
∈
j<k

LA=L
L
jjk

jkjjjj
2 .

The resulting algorithm to fill non zero entries is [10]:

This algorithm could be parallelized if it is filled 
column by column. Entries of each column can be cal-
culated in parallel with OpenMP, because there is no 
dependence among them [11]. Calculus of each col-
umn is divided among cores.

Figure 8. Calculation order to parallelize the Cholesky factorization.

Cholesky solver is particularly efficient because 
the stiffness matrix is factorized once. The domain is 
partitioned in many small sub-domains to have small 
and fast Cholesky factorizations. The parallelization 
was made using the OpenMP schema.

Parallel preconditioned conjugate gradient

Conjugate Gradient (CG) is a natural choice to solve 
systems of equations with SPD matrices. In this article 
will be discussed some strategies to improve conver-
gence rate and make it suitable to solve large sparse 
systems using parallelization.

The condition number ĸ of a non singular matrix 
A∈m×m, given a norm ∥·∥ is defined as  

For the norm ∥·∥2, 
max

min

, 
where σ is a singular value of A.

For a SPD matrix, ( ) ( )
( )Aλ
Aλ=Aκ

min

max , where λ is an eigen-
value of A.

A system of equations Ax = b is bad conditioned if 
a small change in the values of A or b results in a large 
change in x. In well conditioned systems, a small change 
of A or b produces an small change in x. Matrices with a 
condition number near to 1 are well conditioned.

A preconditioner for a matrix A is another ma-
trix M  such that M A has a lower condition number 
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In iterative stationary methods (like Gauss Seidel) 
and more general methods of Krylov subspace (like 
conjugate gradient), a preconditioner reduces the con-
dition number and also the amount of steps necessary 
for the algorithm to converge.

Instead of solving Ax - b = 0, with preconditioning 
it is solved M(Ax -   = 0).

The preconditioned conjugate gradient algorithm is:

A
M

M

For large and sparse systems of equations, it is 
necessary to choose preconditioners that are also 
sparse. In this work was used the Jacobi precondi-
tioner because it is suitable for sparse systems with 
SPD matrices. The diagonal part of M -1 is stored as 
a vector: M -1 = (diag(A))-1. Parallelization of this algo-
rithm is straightforward, because the calculus of each 
entry of qk is independent.

Parallelization of the preconditioned CG is done 
using OpenMP. Operations parallelized are matrix-
vector, dot products and vector sums. Synchroniz-
ing threads has a computational cost, it is possible to 
modify to CG to reduce this costs maintaining numeri-
cal stability [12].

Computer clusters and MPI

It was developed a software program that runs in 
parallel in a Beowulf cluster [13]. A Beowulf cluster 
consists of several multi core computers (nodes) con-
nected with a high speed network.

Figure 9. Diagram of a Beowulf cluster of computers.

Figure 10. Schematic of a multi processor and multi core computer.

In this software implementation, each partition is 
assigned to one process. To parallelize the program 
and move data among nodes, it has been used the 
Message Passing Interface (MPI) schema [14]; it con-
tains set of tools that makes easy to start several in-
stances of a program (processes) and run them in par-
allel. Also, MPI has several libraries with a rich set 
of routines to send and receive data messages among 
processes in an efficient way. MPI can be configured to 
execute one or several processes per node.

For partitioning the mesh, it was used the METIS 
library [8].

Parallelization using multi core computers

Using domain decomposition with MPI, it was possible 
to have a partition assigned to each node of a cluster 
and to solve all partitions concurrently. If each node is 
a multi core computer, also it is givable to parallelizing 
the solution of the system of equations of each parti-
tion. To implement this parallelization, the OpenMP 
model was used.

This parallelization model consists in compiler di-
rectives inserted in the source code to parallelize sec-
tions of code. All cores have access to the same mem-
ory; this model is known as “shared memory schema”.

In modern computers with shared memory architec-
ture, the processor is a lot faster than the memory [15].
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To overcome this, a high speed 
memory called “cache” exists be-
tween the processor and RAM. This 
cache reads blocks of data from 
RAM meanwhile the processor is 
busy, using a heuristic to predict 
what the program will require to 
read next. Modern processors have 
several caches that are organized 
by levels (L1, L2, etc); L1 cache is 
next to the core. It is important to 
considerate the cache when pro-
gramming high performance ap-
plications. The next table indicates 
the number of clock cycles needed 
to access each kind of memory by 
a Pentium M processor:

Access to CPU cycles
CPU registers <=1

L1 cache 3
L2 cache 14

RAM 240

Processor Two dual core Intel Xeon E5502 (1,87GHz)
Caches L3 4 MB, L2 512KB, L1 64KB.
Memory 16 GB, DD3 1 066 MHz
Network Ethernet, 1 Gbit.
RAM 240

Number of 
processes

Partitioning
time [s]

Inversion 
time 

(Cholesky) [s]

Schur 
complement
time (CG) [s]

CG 
steps

Total time 
[s]

14 47,6 18 520,8 4 444,5 6 927 2 3025,0

28 45,7 6 269,5 2 444,5 8 119 8771,6

56 44,1  2 257,1 2 296,3 9 627 4608,9

A big bottleneck in multi core 
systems with shared memory means 
that only one core can access the 
RAM at the same time.

Another bottleneck is the cache 
consistency. If two or more cores 
are accessing the same RAM data, 
then different copies of this data 
could exists in each core’s cache. 
If a core modifies its cache copy, 
then the system will need to up-
date all caches and RAM, thus, to 
keep consistency is complex and 
expensive [5]. Also, it is necessary 
to consider that cache circuits are 
designed to be more efficient when 
reading continuous memory data 
in an ascendant sequence [5].

To avoid lose of performance 
due to wait for RAM access and 
synchronization times due to cache 
inconsistency, several strategies 
can be use:

• work with continuous memo-
ry blocks;

• access memory in sequence;

• each core should work in an independent memory area.

Algorithms to solve this system of equations should take care of 
these strategies.

Numerical experiments

In the next lines is going to be presented just a couple examples; these 
were executed in a cluster with 15 nodes, each one with the following 
characteristics:

Figure 11. Substructuration of the domain.

Total: 60 cores. A node is used as a master process to load the geom-
etry and the problem parameters, the partition and to split the systems 
of equations. The other 14 nodes are used to solve the system of equa-
tions of each partition. Times described are in seconds (s). Tolerance 
used is 1x10-10.

▫ Solid deformation

The problem tested is a 3D solid model of a building that is deformed 
due to self weight. The geometry is divided in 1 336 832 elements, with 
1 708 273 nodes. Now, with three degrees of freedom per node, the re-
sulting system of equations has 5 124 819 unknowns.
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Number of 
processes

Master 
process [GB]

Slave 
processes [GB]

Total 
memory [GB]

14 1,89 73,00 74,89
28 1,43 67,88 69,32
56 1,43 62,97 64,41

Number of 
processes

Master 
process [GB]

Slave 
processes [GB]

Total 
memory [GB]

14 9,03 5,67 14,70
28 9,03 5,38 14,41
56 9,03 4,80 13,82

Number 
of proc-
esses

Parti-
tioning
time [s]

Inversion 
time (Cho-
lesky) [s]

Schur 
comple-
ment
time

(CG) [s]

CG 
steps

Total 
time 
[s]

14 144,9 798,5 68,1 307 1 020,5

28 146,6 242,0 52,1 348 467,1

56 144,2 82,8 27,6 391 264,0

Figure 12. Resulting deformation.

Figure 13. Substructuration of the domain.

▫ Heat diffusion

This is a 3D model of a heat sink. In this problem 
the base of the heat sink is set to a certain tem-
perature and heat is lost in all the surfaces at a 
fixed rate. The geometry is divided in 4 493 232 ele-
ments, with 1 084 185 nodes. The system of equa-
tions solved had 1 084 185 unknowns.
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▫ Large systems of equations

To test solution times in larger 
systems of equations, it was set a 
simple geometry. The, it was calcu-
lated the temperature distribution 
of a metallic square with Dirichlet 
conditions on all boundaries.

Figure 14. Resulting temperature distribution.

Figure 15. Geometry example.

The domain was discretized us-
ing quadrilaterals with nine nodes; 
the discretization made was from 
25 million nodes up to 150 million 
nodes. In all cases, it was divided 
the domain into 116 partitions.

In this case, it has been used 
a larger cluster with mixed equip-
ment of 15 nodes, each one with 
the following characteristics:

Processor Two dual core Intel Xeon E5502 
(1,87GHz)

Caches L3 4 MB, L2 512 KB, L1 64 KB

Memory 16 GB, DD3 1 066 MHz

Network Ethernet, 1 Gbit

Processor Two quad core AMD Opteron 2350 (2,8GHz)
Caches L3 2 MB, L2 2 MB, L1 256 KB

Memory 12 GB, DD2 667 MHz
Network Ethernet, 1 Gbit

14 nodes with the following characteristics:

Of the second set, only 4 cores per node were used. That gives a total 
of 116 cores. An extra node is used as a master process to load the geom-
etry and the problem parameters, the partition and to split the systems 
of equations. Tolerance used was 1x10-10.

Equations Partitioning
time [min]

Inversion time 
(Cholesky) 

[min]

Schur 
complement 

time (CG) [min]
CG steps Total time 

[min]

25 010 001 6,2 17,3 4,7 872,0 29,4

50 027 329 13,3 43,7 6,3 1 012,0 65,4
75 012 921 20,6 80,2 4,3 1 136,0 108,3

100 020 001 28,5 115,1 5,4 1 225,0 152,9
125 014 761 38,3 173,5 7,5 1 329,0 224,2
150 038 001 49,3 224,1 8,9 1 362,0 288,5

Equations Master process 
[GB]

Average slave 
processes [GB]

Slave processes 
[GB]

Total memory 
[GB]

25 010 001 4,05 0,41 47,74 51,79
50 027 329 8,10 0,87 101,21 109,31
75 012 921 12,15 1,37 158,54 170,68
100 020 001 16,20 1,88 217,51 233,71
125 014 761 20,25 2,38 276,04 296,29
150 038 001 24,30 2,92 338,29 362,60



U n i v e r s i d a d  d e  G u a n a j u a t o

Vol. 22 No. 7 Octubre-Noviembre 2012     24

CONCLUSIONS

There have been presented just a few case studies of the 
usage of the Schur substructuring method for complex 
geometries with large number of degrees of freedom.

It is difficult to measure speed up when working 
with complex geometries. The partitioning routines 
used in this work [8] have heuristics that try to divide 
equally the number of nodes, thus the shape of the 
partitions for each mesh could vary a lot. Neverthe-
less, results have a linear tendency in reduction of so-
lution times.

In this case, it was used the Jacobi preconditioner, 
but there are other preconditioners that lead to better 
convergence that could be interesting to test, like the 
family of methods called Finite Element Tearing and 
Interconnect (FETI) [16].
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