
U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 No. 7 Octubre-Noviembre 2012 14

Solution of finite element problems using hybrid
parallelization with MPI and OpenMP
Solución de problemas de elemento finito utilizando paralelización híbrida
con MPI y OpenMP

Keywords:
Parallel computing; sparse matrices; linear
solvers; partial differential equations.

Palabras clave:
Cómputo en paralelo; matrices dispersas;
solvers lineales; ecuaciones diferenciales
parciales.

aBSTRaCT

The Finite Element Method (FEM) is used to solve problems like solid deformation and
heat diffusion in domains with complex geometries. This kind of geometries requires dis-
cretization with millions of elements; this is equivalent to solve systems of equations with
sparse matrices and tens or hundreds of millions of variables. The aim is to use computer
clusters to solve these systems. The solution method used is Schur substructuration.
Using it is possible to divide a large system of equations into many small ones to solve
them more efficiently. This method allows parallelization. MPI (Message Passing Interface)
is used to distribute the systems of equations to solve each one in a computer of a cluster.
Each system of equations is solved using a solver implemented to use OpenMP as a local
parallelization method.

RESUMEN

El Método de Elemento Finito (FEM, por sus siglas en inglés) es utilizado para resolver
problemas como la deformación de sólidos o la difusión de calor en dominios con geometrías
complejas. Este tipo de geometrías requiere de discretizaciones con millones de elementos,
lo que equivale a resolver sistemas de ecuaciones con matrices dispersas de decenas o cien-
tos de millones de variables. La meta es utilizar clústeres de computadoras para resolver
estos sistemas. El método de solución utilizado es la subestructuración de Schur. Utilizando
ésta es posible dividir un sistema grande de ecuaciones en muchos pequeños para resolv-
erse más eficientemente. Este método permite la paralelización. La MPI (Message Passing
Interface, Interfaz para Paso de Mensajes) es utilizada para distribuir los sistemas de ecu-
aciones a resolver en cada computadora del cluster. Cada sistema de ecuaciones es resuelta
utilizando un solver implementado con OpenMP como método de paralelización local.

*Computer Science Department. Centre for Mathematical Research (CIMAT). Jalisco alley w/n, Mineral de Valenciana, Zip Code 36240, Guanajuato, Gto., Mexico. E-mails: miguelvargas@cimat.mx,
botello@cimat.mx

Recibido: 28 de junio de 2011
Aceptado: 9 de octubre de 2011

INTRODUCTION

Solid deformation

It is necessary to calculate linear inner displacements of a solid resulting
from forces or displacements imposed on its boundaries. The displacement
vector inside the domain is defined as

()
()
()
()zy,x,w

zy,x,v
zy,x,u

= ;zy,x,u

the strain vector ε is

Miguel Vargas-Félix*, Salvador Botello-Rionda*

Vol. 22 No. 7 Octubre-Noviembre 2012 15

U n i v e r s i d a d d e G u a n a j u a t o

E

where u is the displacement vector, ε is the stain and
 is the stress. D is called “the constitutive matrix”. A
differential operator E is defined.

Stress vector is defined as

where x, y and z are normal stresses; x, x and x are
tangential stresses. Stress and strain are related by

, (1)

D is called “the constitutive matrix” and depends on
Young moduli and Poisson coefficients characteristic
of media.

Solution is found using the Finite Element Meth-
od (FEM) with the Galerkin weighted residuals. This
means that the integral problem in each element is
solved using a weak formulation. The integral expres-
sion of equilibrium in elasticity problems can be ob-
tained using the principle of virtual work [1]:

,σ (2)

here b, t and q are the vectors of mass, boundary and
punctual forces respectively. The weight functions for
weak formulation are chosen to be the interpolation
functions of the element; these are Ni, i = 1,...,M. M is
the number of nodes of the element and ui is the coor-
dinate of the ith node, so it can be had that

(3)

Using (3), it is possible to rewrite (1) as

or in a more compact form

.u

Now it can be expressed (6) as  = DBu and (2) by

f f

(4)

By integrating (4), it is obtained a system of equa-
tions for each element: eeeee q+f+f=uK tb . All systems of
equations are assembled in a global system of equations:

Ku = f.
K is called “the stiffness matrix”; if enough boundary
conditions are applied, it will be by construction Sym-
metric Positive Definite (SPD). Also it is sparse with
storage requirements of order O (n), where n is the to-
tal number of nodes in the domain. By solving this
system, they will be obtained the displacements of all
nodes in the domain.

Heat diffusion

The other problem to solve is the stationary case of the
heat diffusion. It is modeled using the Poisson equation:

(5)

where (x, y, z) is the unknown temperature distributed
on the domain. Now, it is time to define the flux vector

Boundary conditions could be Dirichlet
en , or Neumann en .

In complex domains, it is complicated to obtain a so-
lution (x, y) that satisfies (5). It is necessary to look for
an approximate solution  that satisfies
in the sense of a weighted integral, like

where W = W(x, y) is a weighting function.

Reformulating the problem as a weighted integral

.

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 No. 7 Octubre-Noviembre 2012 16

Integrating by parts

,

using the definition of flux vector

.

There are several ways to select weight functions W (x, y) when ele-
ment equations are built. It was used the Galerkin method; in this one,
the shape functions are used as weight functions

.

MaTERIaLS aND METHODS

Schur complement method

This is a domain decomposition method with no overlapping [2]. The ba-
sic idea is to split a large system of equations into smaller systems that
can be solved independently in different computers in parallel.

Figure 1. Finite element domain (left), domain discretization (center), partitioning (right).

Figure 2. Substructuring example with three partitions.

This paper starts with a system of equations resulting from a finite
element problem

Kd = f, (6)

where K is a symmetric positive definite matrix of size n×n. If we divide
the geometry into p partitions, the idea is to split the workload to let each
partition to be handled by a computer in the cluster.

For this, it is useful to arrange (reorder variables) of the system of
equations to have the following form

(7)

The superscript II denotes entries that capture the relationship between
nodes inside a partition. BB is used to indicate entries in the matrix that
relate nodes on the boundary. Finally, IB and BI are used for entries with
values dependent of nodes in the boundary and nodes inside the partition.

Thus, the system can be separ-
ated in p different systems:

d

d , i = 1...p. For
each partition, i the vector of un-
knowns dI

i as

d d (8)

After applying Gaussian elimina-
tion by blocks on (7), the reduced
system of equations becomes

-

- d (9)

Once the vector dB is computed
using (9), they are calculated the
internal unknowns dI

i with (8). It
is not necessary to calculate the
inverse in (9). In order to define

 and calculate it
[3], it was proceeded column by
column using an extra vector t,
and solving for c = 1...n

, (10)

(note that many []ci
IBK are null).

Next, BB
iK can be completed with

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

Vol. 22 No. 7 Octubre-Noviembre 2012 17

U n i v e r s i d a d d e G u a n a j u a t o

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

The definition of comes next. In this
case, only one system has to be solved

(11)

and then

Each and holds the contribution of each parti-
tion to (9). This can be written as

- (12)

Once (12) is solved, they can calculated the inner re-
sults of each partition using (8).

Since is sparse and has to be solved many times
in (10), a efficient way to proceed is to use a Cholesky
factorization of . To reduce memory usage and in-
crease speed, a sparse Cholesky factorization has to
be implemented. This method is explained below.

In case of (12), BBK is sparse but BB
iK is not. To solve

this system of equations, a sparse version of conjugate
gradient was implemented. The matrix
is not assembled, but maintained distributed. In the
conjugate gradient method is only important to know
how to multiply the matrix by the descent direction.
In the present implementation, each BB

iK is maintained
in their respective computer, the multiplication is done
in a distributed way and the resulted vector is formed
with contributions from all partitions. To improve the
convergence of the conjugate gradient, a Jacobi pre-
conditioned is used. This algorithm is described below.

One benefit of this method is that the condition num-
ber of the system is reduced when solving (12), this de-
creases the number of iterations needed to converge.

Sparse matrices

Considering all elements, it was assembled a system of
equations (with certain Dirichlet or Neumann bound-
ary conditions) to solve a linear system of equations
Ax = b. Relation between adjacent nodes is captured
as entries in a matrix, because a node has adjacency
with only a few others. The resulting matrix has a very
sparse structure.

Figure 3. Discretized domain (mesh) and its matrix representation.

In this instance, it is turn to define the notation
η(A) (it indicates the number of non zero entries of
A). For example, A∈IR556×556 has 309 136 entries with
η(A) = 1 810, this means that only the 0,58% of the
entries are non zero.

Figure 4. Black dots indicates a non zero entry in the matrix.

In finite element problems, all matrices have sym-
metric structure, and depending on the problem sym-
metric values or not.

▫ Matrix storage

An efficient method to store and operate matrices of
this kind of problems is the Compressed Row Storage
(CRS) [4]. This method is suitable when it is wanted to
access entries of each row of a matrix A sequentially.

For each row i of A, they will be had two vectors: a
vector vA

i that will contain the non zero values of the row
and a vector jA

i with their respective column indexes. This
is an example of a matrix A and its CRS representation

The size of the row will be denoted by | |Aiv or by | |Aij .
Therefore, the q th non zero value of the row i of A will be
denoted by ()qA

iv and the index of this value as ()qA
ij , with

q = 1,...,| |Aiv .

If the entries of each row are not ordered, then to
search an entry with certain column index will have a
cost of ()A

ivO in the worst case. To improve it, it will be
kept vA

i and jA
i ordered by the indexes jA

i . Then, it is pos-
sible to perform a binary algorithm to have an search
cost of ().A

ivO 2log

The main advantage of using CRS is when data in
each row is stored continuously and accessed in a se-
quential way. This is important because an efficient
processor cache usage will be had [5].

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 No. 7 Octubre-Noviembre 2012 18

Figure 5. Left: non-zero entries of A. Right: non-zero entries of L (Cholesky fac-
torization of A).

Figure 6. Left: non-zero entries of reordered A. Right: non-zero entries of L.

Cholesky factorization for sparse matrices

The cost of using Cholesky factorization A = LLT is
expensive if the researcher wants to solve systems of
equations with full matrices. But, for sparse matrices,
he could reduce this cost significantly if he uses reor-
dering strategies and store factor matrices using CRS
identifying non zero entries using symbolic factoriza-
tion. With these strategies, he could maintain memory
and time requirements near to O (n). Also Cholesky
factorization could be implemented in parallel.

Formulae to calculate L entries are

, for i>j; (13)

. (14)

▫ Reordering rows and columns

By reordering the rows and columns of a SPD matrix
A, it is possible to reduce the fill-in (the number of
non-zero entries) of L. The next images show the non
zero entries of A∈IR556×556 and the non zero entries of
its Cholesky factorization L.

The number of non zero entries of A is η(A) = 1 810
and for L is η(L) = 8 729. The next images show A with
an efficient reordering by rows and columns.

By reordering, there is a new factorization with
η(L) = 3 215, reducing the fill in to 0,368 of the size of
the not reordered version. Both factorizations allow
solving the same system of equations.

The most common reordering heuristic to reduce
fill in is the minimum degree algorithm, the basic ver-
sion is presented in [6]:

More advanced versions of this algorithm can be
consulted in [7].

There are more complex algorithms that perform bet-
ter in terms of time and memory requirements; the nest-
ed dissection algorithm developed by Karypis and Kumar
[8] included in METIS library gives very good results.

▫ Symbolic Cholesky factorization

This algorithm identifies non zero entries of L. A deep
explanation could be found in [9].

For an sparse matrix A, it is defined

a ,
as the set of non zero entries of column j of the strictly
lower triangular part of A. In similar way, for matrix
it is defined the set
l

Also, it is possible to use sets that define sets rj and
that will contain columns of L which structure will af-
fect the column j of L. The algorithm is:

l

l l l

l l

r

r

r r

a

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

Vol. 22 No. 7 Octubre-Noviembre 2012 19

U n i v e r s i d a d d e G u a n a j u a t o

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

For the next example matrix column 2, a2 and l2
will be:

Figure 7. Example matrix showing how a2 and l2 are formed.
This algorithm is very efficient. Complexity in time

and memory usage has an order of O(η(L)). Symbolic
factorization could be seen as a sequence of elimina-
tion graphs [6].

▫ Filling entries in parallel

Once non zero entries are determined, (13) and
(14) can be rewritten as

 for i > j;

∑
∈
j<k

LA=L
L
jjk

jkjjjj
2 .

The resulting algorithm to fill non zero entries is [10]:

This algorithm could be parallelized if it is filled
column by column. Entries of each column can be cal-
culated in parallel with OpenMP, because there is no
dependence among them [11]. Calculus of each col-
umn is divided among cores.

Figure 8. Calculation order to parallelize the Cholesky factorization.

Cholesky solver is particularly efficient because
the stiffness matrix is factorized once. The domain is
partitioned in many small sub-domains to have small
and fast Cholesky factorizations. The parallelization
was made using the OpenMP schema.

Parallel preconditioned conjugate gradient

Conjugate Gradient (CG) is a natural choice to solve
systems of equations with SPD matrices. In this article
will be discussed some strategies to improve conver-
gence rate and make it suitable to solve large sparse
systems using parallelization.

The condition number ĸ of a non singular matrix
A∈m×m, given a norm ∥·∥ is defined as

For the norm ∥·∥2,
max

min

,
where σ is a singular value of A.

For a SPD matrix, () ()
()Aλ
Aλ=Aκ

min

max , where λ is an eigen-
value of A.

A system of equations Ax = b is bad conditioned if
a small change in the values of A or b results in a large
change in x. In well conditioned systems, a small change
of A or b produces an small change in x. Matrices with a
condition number near to 1 are well conditioned.

A preconditioner for a matrix A is another ma-
trix M such that M A has a lower condition number

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 No. 7 Octubre-Noviembre 2012 20

In iterative stationary methods (like Gauss Seidel)
and more general methods of Krylov subspace (like
conjugate gradient), a preconditioner reduces the con-
dition number and also the amount of steps necessary
for the algorithm to converge.

Instead of solving Ax - b = 0, with preconditioning
it is solved M(Ax - = 0).

The preconditioned conjugate gradient algorithm is:

A
M

M

For large and sparse systems of equations, it is
necessary to choose preconditioners that are also
sparse. In this work was used the Jacobi precondi-
tioner because it is suitable for sparse systems with
SPD matrices. The diagonal part of M -1 is stored as
a vector: M -1 = (diag(A))-1. Parallelization of this algo-
rithm is straightforward, because the calculus of each
entry of qk is independent.

Parallelization of the preconditioned CG is done
using OpenMP. Operations parallelized are matrix-
vector, dot products and vector sums. Synchroniz-
ing threads has a computational cost, it is possible to
modify to CG to reduce this costs maintaining numeri-
cal stability [12].

Computer clusters and MPI

It was developed a software program that runs in
parallel in a Beowulf cluster [13]. A Beowulf cluster
consists of several multi core computers (nodes) con-
nected with a high speed network.

Figure 9. Diagram of a Beowulf cluster of computers.

Figure 10. Schematic of a multi processor and multi core computer.

In this software implementation, each partition is
assigned to one process. To parallelize the program
and move data among nodes, it has been used the
Message Passing Interface (MPI) schema [14]; it con-
tains set of tools that makes easy to start several in-
stances of a program (processes) and run them in par-
allel. Also, MPI has several libraries with a rich set
of routines to send and receive data messages among
processes in an efficient way. MPI can be configured to
execute one or several processes per node.

For partitioning the mesh, it was used the METIS
library [8].

Parallelization using multi core computers

Using domain decomposition with MPI, it was possible
to have a partition assigned to each node of a cluster
and to solve all partitions concurrently. If each node is
a multi core computer, also it is givable to parallelizing
the solution of the system of equations of each parti-
tion. To implement this parallelization, the OpenMP
model was used.

This parallelization model consists in compiler di-
rectives inserted in the source code to parallelize sec-
tions of code. All cores have access to the same mem-
ory; this model is known as “shared memory schema”.

In modern computers with shared memory architec-
ture, the processor is a lot faster than the memory [15].

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

Vol. 22 No. 7 Octubre-Noviembre 2012 21

U n i v e r s i d a d d e G u a n a j u a t o

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

To overcome this, a high speed
memory called “cache” exists be-
tween the processor and RAM. This
cache reads blocks of data from
RAM meanwhile the processor is
busy, using a heuristic to predict
what the program will require to
read next. Modern processors have
several caches that are organized
by levels (L1, L2, etc); L1 cache is
next to the core. It is important to
considerate the cache when pro-
gramming high performance ap-
plications. The next table indicates
the number of clock cycles needed
to access each kind of memory by
a Pentium M processor:

Access to CPU cycles
CPU registers <=1

L1 cache 3
L2 cache 14

RAM 240

Processor Two dual core Intel Xeon E5502 (1,87GHz)
Caches L3 4 MB, L2 512KB, L1 64KB.
Memory 16 GB, DD3 1 066 MHz
Network Ethernet, 1 Gbit.
RAM 240

Number of
processes

Partitioning
time [s]

Inversion
time

(Cholesky) [s]

Schur
complement
time (CG) [s]

CG
steps

Total time
[s]

14 47,6 18 520,8 4 444,5 6 927 2 3025,0

28 45,7 6 269,5 2 444,5 8 119 8771,6

56 44,1 2 257,1 2 296,3 9 627 4608,9

A big bottleneck in multi core
systems with shared memory means
that only one core can access the
RAM at the same time.

Another bottleneck is the cache
consistency. If two or more cores
are accessing the same RAM data,
then different copies of this data
could exists in each core’s cache.
If a core modifies its cache copy,
then the system will need to up-
date all caches and RAM, thus, to
keep consistency is complex and
expensive [5]. Also, it is necessary
to consider that cache circuits are
designed to be more efficient when
reading continuous memory data
in an ascendant sequence [5].

To avoid lose of performance
due to wait for RAM access and
synchronization times due to cache
inconsistency, several strategies
can be use:

• work with continuous memo-
ry blocks;

• access memory in sequence;

• each core should work in an independent memory area.

Algorithms to solve this system of equations should take care of
these strategies.

Numerical experiments

In the next lines is going to be presented just a couple examples; these
were executed in a cluster with 15 nodes, each one with the following
characteristics:

Figure 11. Substructuration of the domain.

Total: 60 cores. A node is used as a master process to load the geom-
etry and the problem parameters, the partition and to split the systems
of equations. The other 14 nodes are used to solve the system of equa-
tions of each partition. Times described are in seconds (s). Tolerance
used is 1x10-10.

▫ Solid deformation

The problem tested is a 3D solid model of a building that is deformed
due to self weight. The geometry is divided in 1 336 832 elements, with
1 708 273 nodes. Now, with three degrees of freedom per node, the re-
sulting system of equations has 5 124 819 unknowns.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 No. 7 Octubre-Noviembre 2012 22

Number of
processes

Master
process [GB]

Slave
processes [GB]

Total
memory [GB]

14 1,89 73,00 74,89
28 1,43 67,88 69,32
56 1,43 62,97 64,41

Number of
processes

Master
process [GB]

Slave
processes [GB]

Total
memory [GB]

14 9,03 5,67 14,70
28 9,03 5,38 14,41
56 9,03 4,80 13,82

Number
of proc-
esses

Parti-
tioning
time [s]

Inversion
time (Cho-
lesky) [s]

Schur
comple-
ment
time

(CG) [s]

CG
steps

Total
time
[s]

14 144,9 798,5 68,1 307 1 020,5

28 146,6 242,0 52,1 348 467,1

56 144,2 82,8 27,6 391 264,0

Figure 12. Resulting deformation.

Figure 13. Substructuration of the domain.

▫ Heat diffusion

This is a 3D model of a heat sink. In this problem
the base of the heat sink is set to a certain tem-
perature and heat is lost in all the surfaces at a
fixed rate. The geometry is divided in 4 493 232 ele-
ments, with 1 084 185 nodes. The system of equa-
tions solved had 1 084 185 unknowns.

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

Vol. 22 No. 7 Octubre-Noviembre 2012 23

U n i v e r s i d a d d e G u a n a j u a t o

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

▫ Large systems of equations

To test solution times in larger
systems of equations, it was set a
simple geometry. The, it was calcu-
lated the temperature distribution
of a metallic square with Dirichlet
conditions on all boundaries.

Figure 14. Resulting temperature distribution.

Figure 15. Geometry example.

The domain was discretized us-
ing quadrilaterals with nine nodes;
the discretization made was from
25 million nodes up to 150 million
nodes. In all cases, it was divided
the domain into 116 partitions.

In this case, it has been used
a larger cluster with mixed equip-
ment of 15 nodes, each one with
the following characteristics:

Processor Two dual core Intel Xeon E5502
(1,87GHz)

Caches L3 4 MB, L2 512 KB, L1 64 KB

Memory 16 GB, DD3 1 066 MHz

Network Ethernet, 1 Gbit

Processor Two quad core AMD Opteron 2350 (2,8GHz)
Caches L3 2 MB, L2 2 MB, L1 256 KB

Memory 12 GB, DD2 667 MHz
Network Ethernet, 1 Gbit

14 nodes with the following characteristics:

Of the second set, only 4 cores per node were used. That gives a total
of 116 cores. An extra node is used as a master process to load the geom-
etry and the problem parameters, the partition and to split the systems
of equations. Tolerance used was 1x10-10.

Equations Partitioning
time [min]

Inversion time
(Cholesky)

[min]

Schur
complement

time (CG) [min]
CG steps Total time

[min]

25 010 001 6,2 17,3 4,7 872,0 29,4

50 027 329 13,3 43,7 6,3 1 012,0 65,4
75 012 921 20,6 80,2 4,3 1 136,0 108,3

100 020 001 28,5 115,1 5,4 1 225,0 152,9
125 014 761 38,3 173,5 7,5 1 329,0 224,2
150 038 001 49,3 224,1 8,9 1 362,0 288,5

Equations Master process
[GB]

Average slave
processes [GB]

Slave processes
[GB]

Total memory
[GB]

25 010 001 4,05 0,41 47,74 51,79
50 027 329 8,10 0,87 101,21 109,31
75 012 921 12,15 1,37 158,54 170,68
100 020 001 16,20 1,88 217,51 233,71
125 014 761 20,25 2,38 276,04 296,29
150 038 001 24,30 2,92 338,29 362,60

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 No. 7 Octubre-Noviembre 2012 24

CONCLUSIONS

There have been presented just a few case studies of the
usage of the Schur substructuring method for complex
geometries with large number of degrees of freedom.

It is difficult to measure speed up when working
with complex geometries. The partitioning routines
used in this work [8] have heuristics that try to divide
equally the number of nodes, thus the shape of the
partitions for each mesh could vary a lot. Neverthe-
less, results have a linear tendency in reduction of so-
lution times.

In this case, it was used the Jacobi preconditioner,
but there are other preconditioners that lead to better
convergence that could be interesting to test, like the
family of methods called Finite Element Tearing and
Interconnect (FETI) [16].

REFERENCES

[1] Zienkiewicz, O. C., Taylor, R. L. and Zhu, J. Z. (2005). The Finite Element Method:
Its Basis and Fundamentals. Sixth edition. Butterworth-Heinemann.

[2] Kruis, J. (2004). Domain Decomposition Methods on Parallel Computers. In
Progress in Engineering Computational Technology (pp 299-322). Saxe-
Coburg Publications. Stirling, Scotland, UK.

[3] Soria-Guerrero, M. (2000). Parallel multigrid algorithms for computational fluid
dynamics and heat transfer. Universitat Politècnica de Catalunya. Departa-
ment de Màquines i Motors Tèrmics. Available in http://www.tesisenred.net/
handle/10803/6678

[4] Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. SIAM.

[5] Drepper, U. (2007). What Every Programmer Should Know About Memory. Red
Hat, Inc.

[6] George, A. and Liu, J. W. H. (1981). Computer solution of large sparse positive
definite systems. Prentice-Hall.

[7] George, A. and Liu, J. W. H. (1989). The evolution of the minimum degree
ordering algorithm. SIAM Review 31(1): pp 1 19.

[8] Karypis, G. and Kumar, V. (1999). A Fast and Highly Quality Multilevel Scheme
for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing
20(1): pp. 359-392.

[9] Gallivan, K. A., Heath, M. T., Ng, E., Ortega, J. M., Peyton, B. W., Plemmons, R.
J., Romine, C. H., Sameh, A. H. and Voigt, R. G. (1990). Parallel Algorithms
for Matrix Computations. SIAM.

[10] Vargas-Felix, J. M. and Botello-Rionda, S. (2010). Parallel Direct Solvers for
Finite Element Problems (Comunicación del CIMAT N. I-10-08). Available in
http://www.cimat.mx/reportes/enlinea/I-10-08.pdf

[11] Heath, M T., Ng, E. and Peyton, B. W. (1991). Parallel Algorithms for Sparse
Linear Systems. SIAM Review 33(3): pp. 420-460.

[12] D'Azevedo, E. F., Eijkhout, V. L. and Romine, C. H. (2002). Conjugate Gra-
dient Algorithms with Reduced Synchronization Overhead on Distributed
Memory Multiprocessors. Lapack Working Note 56. Available in http://www.
netlib.org/lapack/lawnspdf/lawn56.pdf

[13] Sterling, T., Becker, D. J., Savarese, D., Dorband, J. E., Ranawake, U. A.
and Packer, C. V. (1995). BEOWULF: A Parallel Workstation For Scientific
Computation. Proceedings of the 24th International Conference on Parallel
Processing.

[14] Message Passing Interface Forum. (2008). MPI: A Message-Passing Inter-
face Standard. Version 2.1. University of Tennessee.

[15] Wulf, W. A. and Mckee, S. A. (1995). Hitting the Memory Wall: Implications of
the Obvious. Computer Architecture News 23(1): pp. 20-24.

[16] Farhat, C. and Roux, F. X. (1991). A method of finite element tearing and
interconnecting and its parallel solution algorithm. Internat. J. Numer. Meths.
Engrg. 32: pp. 1205-1227.

Solution of finite element problems using hybrid parallelization with MPI and OpenMP | Miguel Vargas-
Félix, Salvador Botello-Rionda | pp. 14 - 24

