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ABSTRACT

In this paper the stability of specific quantum control protocols is analyzed through a simu-
lation. Two-level quantum systems driven by resonant external fields are studied. The focus 
of attention are those protocols requiring long sequences of external pulses. It is proven 
that these techniques are prone to cumulative error. Inspired by the methodology of the 
treatment of noise in signal processing, noise effects of practical implementations of single 
qubit quantum algorithms are also considered. The numerical results are consistent when 
compared to experimental data previously reported.

RESUMEN

Se analiza la estabilidad de algoritmos específicos de control cuántico a través de la si-
mulación. Se estudian sistemas cuánticos de dos niveles manipulados por campos reso-
nantes externos. Nos enfocamos en aquellos protocolos que requieren secuencias grandes 
de pulsos externos. Se prueba que estas técnicas son susceptibles de errores de acarreo. 
Inspirados por la metodología de tratamiento de señales, se consideran efectos de ruidos 
en implementaciones prácticas de algoritmos cuánticos para un qubit. Los resultados en-
contrados están en concordancia con datos experimentales reportados.
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INTRODUCTION

The quantum world has already provided outstanding technological ben-
efits. It has extended our life expectancy through its applications in medical 
science; it has also improved communication and information processing 
through digital electronics and integrated circuits, having a huge impact on 
our lifestyle. Additionally, the study of quantum systems holds great poten-
tial to revolutionize science as it is understood nowdays due to experimental 
and theoretical developments.

In quantum systems richness and complexity go hand in hand. Their 
manipulation is a highly complex matter from both the experimental and 
the theoretical point of view. One would expect, however, that if we have 
been able to engineer technology using those systems, we would be able to 
manipulate them at will.

Progress in quantum control theory not only allows the clarification and 
understanding of quantum mechanics (Fernández, 1998; Fernández & Miel-
nik, 1994; Fernández & Rosas-Ortiz, 1997; Harel & Akulin, 1999; Mielnik, 
1986, 1974, 1977), but it also enables several novel applications such as 
e.g. particle trapping and cooling (Bushev et al., 2006;  Gomez, Aubin, Oro-
zco, Sprouse, Iskrenova-Tchoukova & Safronova, 2008; Paul, 1990; Smith, 
Reiner, Orozco, Kuhr & Wiseman, 2002), quantum state preparation (Lamb, 
1969; Van Handel, Stockton & Mabuchi, 2005), squeezed states (Delgado 
& Mielnik, 1998; Delgado, Mielnik & Reyes, 1998; Ma & Rhodes, 1989), 
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to name but a few. It seems fair to say that two-level 
quantum systems have gained much attention owing 
to the high expectations for manipulating quantum 
information. The first physical realization of a qubit 
was carried out in 1995 using solid state systems 
(Cirac & Zoller, 1995). Since then, precise control of 
these systems for applications in quantum computing 
has become increasingly realistic due to theoretical 
and technological developments (Barenco, 1995; Bar-
ros, Stute, Northup, Russo, Schmidt & Blatt, 2009; 
Benhelm, Kirchmair, Roos & Blatt, 2008; Degani, 
Zanna, Saelen & Nepstad, 2009; Gisin, Ribordy, Tit-
tel & Zbinden, 2002; Gu, Doherty & Nielsen, 2008; 
Häeffner, Roos & Blatt, 2008; Lee et al., 2003; Loss & 
DiVincenzo, 1998; Maday & Turinici, 2003; Maurer, 
Becher, Russo, Eschner & Blatt, 2004; Nielsen & Ch-
uang, 2000; Nielsen, Dowling, Gu & Doherty, 2006a, 
2006b; Rabitz, de Vivie-Riedle, Motzkus & Kompa, 
2000; Vandersypen, Breyta, Steffen, Yannoni, Sher-
wood & Chuang, 2001; Stievater et al., 2001; Tian, 
Barber, Fischer & Babbitt, 2004; Vandersypen & Ch-
uang, 2005; Wei & Nori, 2004).

Quantum computing promises to deliver more ef-
ficient ways to store and process information. This re-
quires quantum algorithms and these, in turn, consist 
of sequences of quantum logic gates. Selective control 
protocols are the basis in the design of these processes.

Yet, in many theoretical and experimental ap-
proaches, selective manipulation by means of resonant 
driving fields has been a priori assumed. Although ef-
forts have been made in the development of scientific 
software in the field of quantum computing (Tabakin 
& Juliá Díaz, 2011), it is still necessary to develop 
more applications to close the gap between theory and 
experiment. In this article we have as starting point 
a first principle model consisting in a two-level quan-
tum system manipulated by a generic external field. 
An algebraic solution of the Pauli-Schrödinger equa-
tion is reviewed. Since such exact solutions are deeply 
sensitive to the parameters in the model we stressed 
that high accuracy programs are needed. The numeri-
cal implementation1 of the model allows us to discuss 
some non-trivial processes in which the character of 
the control sequence assists the accumulation of non-
resonant effects, triggering the loss of selectivity in the 
quantum algorithms.

As corollary aim in this paper is to include noise ef-
fects on qubit manipulations. Previous research such 
as Brańczyk, Mendonça, Gilchrist, Doherty & Bartlett 
(2007) addresses the control problem in two-level sys-

tems including a dephasing noise, that is, a phase flip 
is applied within a fixed p probability, as in a Bernoulli 
trial. In Delgado (2010) some control procedures in bi-
partite systems are studied in the presence of a para-
site field that is modelled through a homogenous field 
of variable lenght.

Along similar lines, the method we propose here 
can be interpreted as introducing a “signal noise” in 
the parameters of the model. Contrasting our results 
against experimental data from leading experimental-
ist groups (Stievater et al., 2001; Lee et al., 2003), we 
show that our simple noise model captures the ob-
served behavior well.

The model

It is widely accepted that the dynamics of a quantum 
system are defined by a unitary operator U(t, t0) de-
scribing the evolution in the time interval [t0, t]. If the 
state of the system at an initial time t0 is y (t0)ñ, then, 
at an arbitrary moment t, it is given by 

ψ ψ〉 〉t U t t t| ( ) = ( , )| ( ) .0 0
(1)

This operator fulfills the first order initial value 
problem (  = 1) 

−
t
U t t HU t t U t t 1d

d
( , ) = i ( , ), ( , ) = ,0 0 0 0

(2)

where H is the Hamiltonian of the system.

The equation (2) for a time-dependent Hermitian 
Hamiltonian has solutions with exponential represen-
tation in terms of Hermitian operators Hef(t, t0) known 
as the effective Hamiltonians of the system in [t0, t]

( )− −
U t t( , ) = e .

t t H t t

0

i 0 ef ( , 0 ) (3)

The point of departure for the quantum manipula-
tion processes is the selection of an initially station-
ary system. We focus on the simplest case of a two 
level system (or qubit). This choice is sufficiently gen-
eral in the sense that it allows to implement quan-
tum control protocols that can be applied within the 
framework of the quantum information theory. Fur-
ther extension of our results to an ensemble of qubits 
(the q-register) lies out of the scope of this article.

The qubit is represented by a (free) Hamiltonian 
H0 whose eigenvalues E0, E1 and corresponding eigen-
states ½0ñ, ½1ñ are known. In the Hubbard representa-
tion we have

〉 〈 + 〉 〈H E E= |0 0| |1 1|.0 0 1 (4)

1 The code for the simulation was written by the authors in C++. All the graphics were obtained using the gnuplot utility.
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The solution of (2) is straightforwardly constructed 
for the Hamiltonian H0, namely 

( )− −
U t t( , ) = e .

t t H

0 0

i 0 0 (5)

Notice that T0 = 2p/w0, with w0 = E1 - E0, is the period 
of a cyclic evolution process generated by H0. In fact, 
in each time interval [t0,t0 + T0], the evolution opera-
tor U0(T0) = e -iT0H0 is proportional to unity in the state 
space. It is not difficult to check that e -iT0E0 = e -iT0E1, 
meaning that when applying U0(t0 + T0,t0) to an arbi-
trary state

ψ〉 〉 + 〉a a| = |1 |0 ,1 0 (6)

a new state is obtained that differs from the previous 
one only by a phase factor.

The main task in the control problem is to construct 
the proper Hamiltonian H(t) which generates the unitary 
operator U(t, t0) transforming ½y(t0)ñ into ½y(t)ñ consis-
tently with (1)-(2). The most direct idea is to perturb a 
stationary system (the qubit) by using a time depen-
dent external field 

ε ε〉 〈 〉 〈+V t t t( ) = ( )|0 1| ( )|1 0|,01 10 (7)

with ε εt t( ) = ( )01 10  for V(t ) to be a Hermitian control op-
erator (the bar stands for complex conjugation). Coef-
ficient e01 is the transition amplitude between states 
½0ñ, ½1ñ and it is proportional to the field strength.

In the semiclassical approach the system interacts 
with a very soft, coherent, external field which does 
not cause radiative jumps. The time-dependent Ham-
iltonian is then H(t) = H0 + V(t ).

In the resonant control technique, the dynamic op-
erations are generated by exploiting the capability of 
fields of particular frequencies to induce transitions 
between two states of the qubit. In these operations 
the driving field is generally a harmonic, monochro-
matic external electromagnetic field. The control op-
erator in the rotating wave approximation (RWA) has 
the form

ε
〉 〈 〉 〈+ 

ω −V t( ) =
2

e |0 1| e |1 0| ,ti ωti

(8)

where e stands for the field strength and w for the field 
frequency. The matrix representation of H(t) can be 
expressed in terms of spin Pauli matrices: Letting E1 = 
w0/2 and E0 = w0/2,

ω
σ

ε
σ+

ω σ ω σ−
H t( ) =

2 2
e e .z

t z
x

t z0
i
2

i
2 (9)

The solution of (2) for this case can be immediately 
written (Cruz y Cruz & Mielnik, 2007).

ω σ ε σ ε σ ω ω σ( ) ( ) ( )− − − + + − −
U t t( , ) = e e ,

t t z x x y y z t t

0

i
2 0

i
2 0 0  (10)

with ex = e cos(wt0) and ey = e sin(wt0).

The reader may observe that for w = w0 a complete 
period of the external field coincides with one period 
of the free evolution of the system. This basic process 
and the external field are then “in phase” and the con-
trol effects are amplified. This suggests that selective 
control operations can be induced on qubits just by 
tuning the external field to the proper frequency. The 
effects of this evolution operator for different values of 
the external field parameters can be easily understood 
by considering the geometrical picture of the space 
of states given by the Bloch sphere2 representation 
(Bengtsson & Zyczkowski, 2006; Fernández & Rosas-
Ortiz, 1997; Hopf, 1931; Mielnik, 1968; Mosseri & 
Dandoloff, 2001; Ryder, 1980).

We could also study the effect of the operator (10) 
following the evolution of the affected state. The complex 
coefficients a0(t ), a1(t ) in (6) now depend on t, and thus 
we define P½iñ as the probability of finding the system in 
state ½iñ (i = 0,1) in a measurement at time t

P P
〉 〉
t a t t a t( ) = ( ) , ( ) = ( ) .|0 0

2

|1 1

2
(11)

Aditionally the restriction 

P P+
〉 〉
t t( ) ( ) =1,|0 |1 (12)

gives us the equation of a sphere S3 embedded in R4. This 
condition defines each state up to a general phase factor.

The resonant q-control

Let us consider the evolution operator (10) from this 
point of view. If e = 0, the (free) evolution operator 

ω σ( )− −
U t t( , ) = e ,

i t t z
0 0

2 0 0 (13)

causes rotations of y (t)ñ around the z- axis with an 
angular frequency w0. This is the natural evolution of 
the system which is present even if no external fields 
are applied (figure 1). 

Figure 1. The free evolution of the qubit visualized on the Bloch sphere. It consists 
of circular trajectories. The constant value of z indicates that the proba-
bilities (11) remain the same during the evolution.

Source: Authors own elaboration.

2 An explicit form of the Hopf map we chose: ( ) ( ) −x t Re a t a t y t Im a t a t z t a t a t( ) = 2 ( ) ( ) , ( ) = 2 ( ) ( ) ,  ( ) = ( ) ( ) .0 1 0 1 1

2

0

2
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When the external field V(t ) is applied, the evolu-
tion operator (10) consist of two factors. The first one 
is the unitary transformation to the rotating frame, 
while the second one includes information about the 
evolution in this frame. In the rotating frame, the state 
therefore performs circular trajectories around an axis 
z′ defined by the unit vector 

ε ε ω ω( )
Ω

−n = 1 , , ,x y 0 (14)

with angular frequency ε ω ω( )Ω + −= 2
0

2
 [figure 2(a)]. 

In the laboratory frame, the z′- axis rotates around the 
z- axis with angular frequency w, meaning that the 
trajectory is confined to a belt of width d = 2q, where q 
= arctan[e/(w - w0)] is the angle between the axes z and 
z′, around the free trajectory.

since in this case the free evolution term transforms 
into a phase factor. The qubit then performs an effec-
tive rotation around the x- axis on the Bloch sphere 
with angular frequency e. This indicates that even in 
the case e  1, if this control operation is repeated 
many times, the system, in a particular state, can 
eventually reach the corresponding orthogonal one. 
These are called the Rabi rotations (Rabi, Ramsey & 
Schwinger, 1954) [figure 2(b)].

These facts lead to the assumption that a quantum 
system can be selectively manipulated just by means 
of resonant external fields. Yet, some care must be 
taken if one seeks to implement quantum control 
operations on a system which has multiple spectral 
levels or that is composed by a number of qubits. In 
that case, it is more convenient to apply sequences 
of external fields of specific frequencies, each one ad-
dressing a particular qubit (Khaneja & Glaser, 2001; 
Maurer et al., 2004; Nigmatullin & Schirmer, 2009; 
Schirmer, Greentree, Ramakrishnaand & Rabitz, 
2002; Schirmer, Pullen & Pemberton-Ross, 2008; 
Schirmer & Solomon, 2004; Vandersypen & Chuang, 
2005; Vandersypen et al., 2001; Wei & Nori, 2004), 
alternating with free evolution intervals. The general 
assumption is that each qubit will disregard the non-
resonant part of the sequence.

Yet, for some cases the “on-off” sequences allow 
the accumulation of the non-resonant effects that are 
supposed to be negligible. For some particular pro-
tocols the errors become larger as the number of op-
erations increases, in such a way that either the final 
state may be very different from the expected one, or 
even the qubit may be out of sight. The phenomenon 
is crucial for systems with short coherence time that 
must be driven by intense fields. This fact is signifi-
cant for applications in quantum computing, where 
the precision must be high and the number of opera-
tions is large (e.g. an experimental Shor’s algorithm 
may consist of approximately 300 pulses interrupted 
by time intervals of free evolution, applied to an en-
semble of 7 qubits (Vandersypen et al., 2001).

Testing a resonant manipulation of a single qubit

In the present section we analyze concrete realiza-
tions of resonant control protocols. A great number of 
experiments in the last decade has been implement-
ed using solid state systems as qubits. As discussed 
previously, quantum control requires an external field 
to induce state transitions. In the resonant regime 
the field strength and interaction time are decisive to 
drive the system from the initial to the target state. 
From the pure mathematical point of view the tuning 

Figure 2. The Bloch sphere. (a) The free evolution of the qubit lies on a plane 
orthogonal to the z - axis (dashed curve), while the trajectory in the 
rotating frame when the driving field is applied lies on the plane ortho-
gonal to z′ (solid curve). (b) If the system performs Rabi rotations, its 
trajectory is a circle containing both orthogonal states ú1ñ, ú0ñ.

Source: Authors own elaboration.

a)

b)

In the non-resonant case (w ¹ w0), and for small 
enough values of the manipulating field strength (e/½ 
w0 - w½  1), the divergence q between the z- and z′- 
axes will be so slight that the trajectory will almost 
coincide with that of free evolution.

In the resonant case w = w0, the evolution operator 
is given by 

ε σ−
U T( ) = e ,

T x
i
2 (15)
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of these parameters is just a direct exercise using the 
geometrical picture of the Bloch sphere. Nevertheless, 
in the experimental realizations of control operations 
some practical imperfections should not to be ignored 
(the environmental noise, inaccuracies in the driving 
field parameters, to name but a few).

In order to observe the Rabi oscillations experimen-
tally the chosen observable may be e.g., the population 
of the first excited state. In our simulations, the occu-
pation probability for the first excited state Pú1ñ (11) is 
the control parameter that, assuming ergodicity, cor-
responds to the population. Our results are compared 
to those in (Lee et al., 2003) in which the authors pres-
ent a resonant technique to induce Rabi rotations on 
trapped-ion qubits via stimulated Raman transitions.

To reproduce the ideal resonant case we chose w = 
w0 = 2p × 14.53GHz.3 The field strenght now plays the 
role of rotation frequency around the x′- axis. The 
value e = 2.25 × 10-5w0 was found numerically and cal-
culated to produce seven Rabi rotations in a period of 
200 × 10-5s, as a cross check. In figure 3 we observe 
the variation of Pú1ñ with the simulation time (that in 
this case corresponds to the pulse duration). This op-
eration produces effectively a NOT gate in a period of 
14 × 10-5s. In the Bloch sphere the state goes from |0ñ 
to |1ñ within this time interval as it is shown in figure 4.

In order to account for the deviation from this ide-
al situation, we introduced small modifications in the 
field frequency. We considered two small variations in 
the value of the field frequency, namely ú Δw ú = 1 × 10-6w0 
and 1 × 10-5w0 where Δw = w - w0 (see figure 5). The net 
effect of varying the field frequency is to reduce the 
amplitude of the oscillations. The detuning Δw from 
the resonant frequency deviates the rotation axis (14) 
of the state in the Bloch sphere. The entire trajecto-
ry will then be modified in such a way that it cannot 
reach the antipodal point.

Note that in figure 5, for Δw > w0 × 10-5 the ampli-
tude of the oscillations is practically negligible, meaning 
that for this detuning the driven field can be considered 
as non resonant. This fact allows to determine qualita-
tively to which extent a frequency field can be considered 
as resonant to the system (a threshold in the parameters).

Distinctively, a slight variation to the field strength 
modifies only the Rabi frequency. The system will be 
able to perform complete Rabi rotations that may be 
advanced or retarded depending on the field strength, 
i.e., for weaker/stronger fields it takes more/less time 
for the system to reach the antipodal state.

3 Since the axis of rotation (14) is defined in terms of the frequencies and the field strength, it is convenient to express these quantities in units of one of them; for this purpose, we selected w0. 

Figure 3. The evolution of the probability (11) of finding the system in state |1ñ for 
the resonant case. The initial state is |0ñ. After a lapse of time equiva-
lent to 196 basic periods of 1 × 10-5s we observe 7 Rabi oscillations. 
The curve is drawn as a reference to guide the eye.

Source: Authors own elaboration.

Figure 4. An effective NOT gate. The trajectory on the Bloch sphere shows the 
system going from |1ñ to |0ñ.

Source: Authors own elaboration.

Figure 5. The evolution of P|1ñ for 3 different frequencies. In all simulations the initial 
state is taken to be |0ñ. As in Figure 3, the solid curve that corresponds 
to the resonant case is included for reference. For Δw = w0 × 10-6, 
w0 × 10-5 we observe that the net effect is to reduce the amplitude of 
the oscillations, as well as to decrease their frequency.

Source: Authors own elaboration.
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In figure 6 we present the effect of a small variation 
Δe in the control field strength, taking Δe = ±(1/6)e. As 
can be observed, these variations do not affect the am-
plitude of the oscillations; instead, they induce a drift 
in the Rabi frequency. However, note that the effect of 
averaging over different processes is to modulate the 
amplitude of the oscillations. As in the experimental 
regime, the Rabi flopping plots are the result of the av-
eraging over an ensemble of experiments (see Stievater 
et al., 2001; Lee et al., 2003). Identifying the origin of 
the enveloping decay becomes complicated. Yet, in the 
simulation, the effects of variations in strength and fre-
quency of the driving field are essentially different. 

2010). However, the main difference with our study is 
related to the control protocol. The distortion occurs 
in the length of the single cycle of interaction with the 
instrument control, which for us would correspond to 
one clock cycle, making it impossible to analyze the 
effect of a cumulative error in the sequences of inter-
action between the system an the external field.

In this context, assuming that a control field of fre-
quency w is applied during a period Tc followed by a lapse 
Tf of free evolution. The evolution operator of the system 
in a complete period of time T = Tc + Tf then reads (Cruz y 
Cruz & Mielnik, 2007; Cruz & Medina, 2010). 

ω ω σ ω ω σ εσ( )− + − − +
U T( ) = e e .

i Tf Tc z i Tc z x
1
2 0

1
2 0











 (16)

In a realistic simulation one has to consider that the 
physical instrument that generates the external field is 
not perfect. We stress that the theoretical treatment re-
viewed in this paper is for a generic system. Under the 
appropiate translation of the constants involved in (16) 
it can represent the previously described evolution of a 
concrete physical realization of a qubit-field coupling 
system. For instance we could consider a solid state 
qubit (ions or atoms in which only two energy levels 
are considered) having a laser beam acting as a con-
trol tool. Since the spectral emission line from which 
the beam originates does have a finite width, even the 
most accurate monocromatic laser must consists of the 
superposition of several frequencies. We propose that 
this effect can be captured considering a single effec-
tive frequency that deviates from an ideal mean value. 
This can be achieved introducing a “noise signal” into 
the field parameters (Lathi, 1995). The frequency of the 
external field is now allowed to take random values in-
side a Gaussian probability distribution with mean at a 
non resonant value. For ½w0 - w½ 1 the dynamics are 
confined to a narrow region of the Bloch sphere, again 
resembling the stationary non resonant trajectories 
[figure 7(b)]. Yet, for (w/w0) ~ 1, the information about 
the state of the system may be rapidly lost in those pro-
tocols. Figures 7-8 show some points of the trajectories 
for w = 2p × 470 MHz with field strength e = 0.01w0 and 
e = 0.1w0 respectively, and frequencies in the Gaussian 
distribution with mean at w = 2p × 202 MHz and stan-
dard deviation s = w0/100. They reveal that the non 
resonant effects cannot be neglected for a great number 
of control operations. The complete sequence can lead 
to radically different results. In figure 7 we illustrate 
two trajectories using two different sequences of pulses 
in the same Gaussian distribution of frequencies, for a 
field strength e = 0.01w0 In 7(a) the state of the system 
is confined to a narrow region around the free evolution 
trajectory. In contrast, the trajectory in 7(b) is spread 
in the upper hemisphere z > 0. Even more serious is 

Figure 6. The evolution of P|1ñ for 3 different field strengths. In all simulations the 
initial state is taken as | 0ñ. The solid curve corresponds to e = 2.25 
× 10-5 w0. For e ± Δw we can observe a drift in the Rabi frequency. 
Finally we present the average between the last two cases.

Source: Authors own elaboration.

Non resonant control operations

Since the external field is tuned in a different frequency 
to that of the qubit, the goal in non resonant control 
operations is to mantain the system in the initial state, 
i.e. the system has to remain stable. In the following, 
a single qubit of natural frequency w0 in the presence 
of some sequences of non resonant external fields is 
considered. Different cases are explored and numerical 
results are reported. These may shed some light in the 
design of precise quantum computing algorithms.

Our tests are based on a finite sequence of “on-
off” stages in the control field. The choice of such a 
process is mainly due to two reasons: firstly, it is suf-
ficiently general and it allows us to generate several 
control protocols; secondly, it emulates the clock cy-
cles scheme in classical computation.

A similar methodology in modeling the distortion 
in a bipartite system was implemented in (Delgado, 



U n i v e r s i d a d  d e  G u a n a j u a t o

Vol. 23 No. 5 Septiembre-Octubre 2013     16 Numerical implementation of quantum control protocols based on “on-off” stages for a single qubit | 
Julieta Medina | pp. 10 - 19

the case of strong field e = 0.1w0 (figure 8), since it may 
drive the system completely out of control. The points 
of the trajectory can be seen spreading all over the 
sphere after a relatively large sequence of 100 steps.

Figure 7. Two trajectories of the state considering the same physical conditions. 
w0 = 2p × 470 MHz under the action of external pulses of non reso-
nant frequencies taking values in the Gaussian distribution with mean 
at w0 = 2p × 202 MHz and s = 2p × 4.7 MHz. The field strength 
is (e/w0) = 0.01. For these processes Tc = 1.65 × 10-9s, Tf = 
0.49 × 10-9s and a1(t0) = 1, and 200 pulses were applied.

Source: Authors own elaboration.

Figure 8. Trajectory of the state in the strong field case e = 0.1w for a 100-pulse 
sequence. Other parameters remain the same as those considered in 
figure 7.

Source: Authors own elaboration.

a)

b)

Now consider the case in which fields of 5 differ-
ent frequencies are applied randomly chosen from a 
uniform probability distribution. Field pulses are sep-
arated by free evolution time intervals. This process 
emulates a system of 6 non-interacting qubits, 5 of 
them with the chosen 5 different natural frequencies 
and one of them characterized by w0 as its natural os-
cillation frequency. The external field is selected to be 
resonant in each step to one of the first mentioned 5 
qubits. Since w ¹ w0, what would be expected is that 
the qubit at the center of our analysis may stay stable 
in its initial state.

This is not the situation in figure 9(a) that shows 
the first 100 points of the trajectory for a qubit with 
frequency w0 = 2p × 470 MHz. This number of steps is 
necessary for the state initially in ½0ñ to reach state ½1ñ. 
In this case, fields of strength e = 0.1w0 and frequen-
cies w/(2p) = 51MHz, 77MHz, 126MHz, 202MHz and 
500MHz (Vandersypen & Chuang, 2005) were dis-
tributed during equal “on-off” time intervals of length 
p/w0. Figure 9(b) shows some points of the trajectory 
for frequencies of the field pulses coinciding with w0. 

Since the number of steps was 100, the resonant 
field was applied, on average, enough times for the 
qubit to perform a complete Rabi rotation. The picture 
shows that the final state is slightly deviated from the 
initial one, meaning that the presence of the non reso-
nant fields does not only delay the process, but it also 
modifies the expected trajectory.

CONCLUDING REMARKS

There are still certain gaps in the existing manipulat-
ing techniques so far disregarding the problem of se-
lectivity breaking in quantum algorithms. Resonant 
control operations seem to be the most efficient way to 
manipulate a quantum system; however, care should 
be taken with non resonant perturbations in complex 
systems driven by long sequences of external fields. 
The numerical results reported above manifest that the 
system can be destabilized by the effect of interrupt-
ing the control operations. The situation becomes even 
more dramatic when uncertainties in the manipulating 
instrument (arising e.g. from finite precision) or noise 
are considered. There is, however, some evidence that 
the non resonant fields do not always destabilize the 
system, making possible to drive it efficiently.

Noise effects can be modeled considering slight 
variations in the parameters of our model. The pro-
posed methodology is similar to that used to include 
noise in signal processing.
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Figure 9. Some points of the trajectories in the Bloch sphere of the qubit w0 = 2p × 470MHz manipulated by fields of 5 different frequencies. In (b) and (d) the evolution 
of the probability defined in (11) is presented. In this case Tc = Tf = p/w0 = 1.06 × 10-9s and (e/w0) = 0.1. (a)-(b) For (w/2p) = 77 MHz, 500MHz, 
126MHz,-51MHz and 202MHz; In (b) we show the corresponding projection of the previous trajectory in the - axis; (c)-(d) for (w/2p) = 470MHz, 
500MHz, 126MHz,-51MHz and 202MHz, and its corresponding projection.

Source: Authors own elaboration.

a) b)

c) d)

The simulation of the proposed model makes it 
possible to explore the stability of control protocols. 
Thus, it is possible to define thresholds of tolerance 
in the model parameters. A proposal of a fine control 
mechanism such as that presented by Brańczyk and 
Delgado is outside the remit of this study. The cor-
rection mechanism needs the prediction of the most 
likely final state. Based on the methodology presented 
here such a requirement could be explored numeri-
cally using Monte Carlo simulations. A survey in that 
direction is in progress.
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