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Heteroscedasticity in a two-factors design model
Heteroscedasticidad en un modelo de diseño de dos factores
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ABSTRACT

This paper studies the two-factors design model when the heteroscedasticity of variance is 
present in errors. As can be observed, testing of hypothesis based on the main effects for this 
design model can be performed using Hotelling's T 2 test. Simultaneous confidence intervals 
are also proposed. Finally, the proposed methodology is applied to a real-life example.

RESUMEN

En el presente trabajo se estudia el modelo de diseño de dos factores cuando se presenta la 
heteroscedasticidad de varianza en los errores. Como se verá, la prueba de hipótesis sobre 
los efectos principales para tal modelo de diseño se puede realizar a través del estadístico 
T 2 de Hotelling. Además son propuestos intervalos de confianza simultáneos. Finalmente 
la metodología propuesta es aplicada a un ejemplo real.
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INTRODUCTION 

Consider the two-factors design model

y i t j rij i j ij= =1,2, , ; =1,2, , .µ τ β ε+ + +  

(1)

where yij are observable random variables. The εij are unobservable random 
variables, they are independent and are both normally distributed, furthermore
ε σij   (0, ).2

σ µ τ τ τ β β β2
1 2 1 2, , , , , , , , , t r  are unknown parameters, and the parameter 

space is Ω, where

Consider that there is interest in testing the hypothesis:

H t0 1 2: = = = .t t t

(2)

Remark 

Let T1,T2,...,Tt be the t treatments and let τi, i = 1,2,...,t be the correspond-
ing associated parameters to each treatment Ti. The main effect of the 
ith treatment is defined as t tj - , where . Thus, formally, the 
hypothesis of interest in this model is that: the main effects of all t treat-
ments are equal. That is: 
H t0 1 2: = = = ,t t t t t t- - -
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which is equivalent to

H t0 1 2: = = = .t t t (3)

And the alternative hypothesis Ha is: at least one 
equality is an inequality. In addition remember that 
the mean of the treatment Ti is µ + τ i, i = 1,2,...,t.

In this paper it is assumed that certain assump-
tions about the model (1) are not met. Thereby, alter-
natively it is assumed that errors εij satisfy the follow-
ing conditions:

si
si (4)

These premises on εij, establish that the observa-
tions are uncorrelated if they are in different blocks; 
that the variance of the ith treatment observation σii; 
and that the covariance of the ith treatment observa-
tion and kth treatment observation in the same block 
σik. In some instances these premises seem to be more 
realistic than those generally made, i.e., that the εij are 
distributed independently (0,σ2)

Furthermore, it is assumed that the errors are not 
normally independent and identically distributed, in-
stead it is assumed that errors εij have an elliptical 
joint distribution with covariance structure such that 
the set of specifications stated by (4) are satisfied, 
which means that errors are not independent but, 
perhaps, only uncorrelated. In literature, this prob-
lem was addressed by Graybill (1961) under the same 
assumption of heteroscedasticity of variance, but as-
suming normality.

The work is presented as follows: the first part 
gathers some results of matrix algebra and multivari-
ate statistics, while introducing the notation that will 
be used. The main contribution of this work is devel-
oped in advanced, where the methodology used to test 
the hypothesis (2) is proposed, under the covariance 
structure specified by (4), i.e. under heteroscedasticity 
of variance for the two-factors design model (1). The 
article, concludes with the application of the proposed 
methodology to a real-life example.

Preliminary results 

A comprehensive discussion of matrix algebra and 
multivariate statistical analysis can be found in Har-
ville (2008) and Muirhead (1982). For convenience, 
some notations will be introduced, although in gen-
eral the authors have adhered to standard notations. 

If A is n × m matrix, A′: n × m denotes the transpose 
of A. Generically, if A is n × m, it shall be written in term 
of their elements, rows or columns, respectively, as

A

a
a

a

a a a= ( ) = = ,

(1)

(2)
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where a(i) is a vector m×1, i = 1,2...,n and aj is a vector 
n×1, j = 1,2...,m. If A is a square matrix of order n it 
is termed symmetric if A = A′. The identity matrix 
of order n is denoted by In. The vector with ones in 
each position of order n is denotes as 1n

n
= (1,1, ,1)

1 2 �
… ¢ and 

the kth vector of the canonical base of order n is 
denoted as ek

n

k k k n
= (0,0, , 0 ,1, 0 , ,0)

1 2 1 1� �
… …

− +
′. Similarly, vector 

with zeros in each position of order n is denotes as 
0n

n
= (0,0, ,0)

1 2
… ′. 

▫ Definition 1

If A is a n × m matrix then by vec(A) that is the mn × 1 
vector formed by stacking the columns of A under each 
other; that is, if 

A = (a1a2···am)

where aj is n × 1, j = 1,2,...,m, then

vec( ) = .

1

2A
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▫ Definition 2

Let A = (aij) be an m × n matrix and B = (bij) be a p × 
q matrix. The Kronecker product (also known as di-
rect product or tensor product) of A and B, denoted 
by A ⊗ B, is the mp × nq matrix 

A B

B B B
B B B

B B B

⊗
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The relation between Kronecker product and the of a 
matrix is specified in the following lemma. 

▫ Lemma 1 
If B is r × m, Y is m × n, and C is n × s then

vec(BXC) = (C′⊗ B)vec(Y)

Now, the generalized multivariate elliptical ma-
trix distributions are introduced in this section. A 
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comprehensive and systematic study can be found in 
Fang & Zhang (1990) and Gupta & Varga (1993). 

▫ Definition 3 

It is said that the random matrix Y: n × m has a variate 
elliptical matrix distribution, denoted as , 
if its density with respect to the Lebesgue measure is

(5)

where

C m n mn u h u dumn u

mn( , ) = [ /2]
2

( )/2 >0

1 2
1Γ

p ∫ −
−

{ } (6)

and Θ is n × m, Σ is m × m and µ is n × m are constant 
matrices, such that Θ and Σ are symmetric positive 
definite matrices. Also, in (5), tr(·) denotes the trace, 
│A│denotes the determinant of A and in (6), Г[] de-
notes the gamma function.

Observe that this class of multivariate matrix dis-
tributions includes normal, contaminated normal, 
Pearson type II and VII, Kotz, Jensen-Logistic, power 
exponential and Bessel distributions, among others; 
these distributions have tails that are more or less 
weighted, and/or present a greater or smaller degree 
of kurtosis than the matrix multivariate normal dis-
tribution. In particular, observe that if in Definition 
3 h is taken that h(u) = exp(-u/2), from (6) it can be 
readily seen that C(m,n) = (2π)-mn/2. Hence, the density 
obtained is

(7)

which is named, the multivariate matrix normal dis-
tribution and is denoted as . In (7), 
etr tr{} { ()}º exp . 

Similarly, observe that if in Definition 3 h is tak-
en as h(u) = (1+u/v)-s, where s,n ∈ ℜ, s,v > 0, s > mn/2; 
from (6) it can be seen that 

C m n s

s mnmn
( , ) = [ ]

( )
2

.
/2

Γ

Γπν −



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


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Therefore, the density is

(8)

which is termed the multivariate matrix Pearson type 
VII distribution. Observe that when s = (mn+v)/2 in (8), 
Y is said to have a multivariate matrix t distribu-
tion with v degrees of freedom. And in this case, if 
v = 1, then Y is said to have a multivariate matrix 
Cauchy distribution.

The following result summarises some basic proper-
ties of elliptical distributions. 

▫ Proposition 1

Let .

1. Then the characteristic function of Y is 

2. Assume C is p × q, A is p × n and B is m × q are 
constant matrices. Then

3. If Y has a finite first and second moments, then 

(a) E(Y) = µ,

(b) Cov(vecY) = cΘ ⊗ Σ, and

(c) Cov(vecY′) = cΣ ⊗ Θ,

where c = 2 (0)− ′y .

In particular when  in Proposition 
1, then c = 1.

Let  with n > m and let h be non-
increasing and continuous with µ : m × 1 and Σ : m × m 
are unknown. It is interested in whether µ equals a 
specific µ0, that is, it is required to test the hypothesis 

H H

Without loss of generality µ0 = 0, is assumed, oth-
erwise, it may consider to replace Y by Y - 1n µ ′0       . There-
fore the above hypothesis becomes 

H H (9)

By Fang & Zhang (1990) (see also Gupta & Varga, 
1993) it easy verify that under null hypothesis (9) the 
corresponding statistic test is invariant regarding 
the family of elliptical distributions (5). Then to de-
termine the statistic test and its null distribution it is 
sufficient to study the latter under normality. 

From Fang & Zhang (1990) and Muirhead (1982) 
under likelihood ratio criteria or from Srivastava & 
Khatri (1979) under the union-intersection princi-
ple of test construction of Roy, the rejection region for 
a test of level α is

T m n
n m

F m n m
2

, ,> ( 1)-
- -a

(10)
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where Fα,m,n-m denotes the 100α upper percentage point 
of the F distribution, with m, n - m degrees of freedom 
and T 2 the Hotelling statistic is defined by 

with

Y Y 1 S Y I 11 Y= 1 = 1
1

1 .
n

and
n nn n′ ′ ′
−

−








The significance of T 2 still leaves the question of 
which particular equally µj = µ0j, j = 1,2,...,m (in H0 : µ = 
µ0) unaswered which have probably lead to the rejec-
tion of the vector hypothesis. While it might help test 
the individual hypothesis by referring their univariate 
t statistics to the Bonferroni critical values, the union-
intersection nature of the T 2 test leads directly to a 
way of controlling the Type I error probability for the 
tests on all linear functions of the response means a′µ, 
where is any nonnull vector m × 1. Thus, the family of 
simultaneous confidence intervals of Roy and Box 
with coefficient 1 - α for all choices of the elements of 
a in a′µ are

where

T m n
n m

Fm n m m n ma a, ,
2

, ,= ( 1) .- -

-
-

PROPOSED METHODOLOGY

First observe that, alternatively, the model (1) can be 
re-written as 

y X= B+

where

y = , , , , , , , , , , , , ,11 12 1 21 22 2 1 2y y y y y y y y yr r t t tr   ( )′

(11)
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such that,

(12)

Now, note that under the assumptions (4), the as-
sumption (12) is modified to

(13)

where

Under this assumption it is interesting to test the 
hypothesis (3). 

With this aim in mind, the vector (11) y, can be 
rewritten as the matrix

 = =1 2
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and note that y = ( )vec  . Then

where

Now, let

 1 2= =M y y t[ ]

where M 0 I= [ ]1 1t t− − ′. Also, note that y e1 1=  t. Then, define
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where γ τ τ τ τ τ τ= ( , , , )2 1 3 1 1− − − ′
 t . And

 

Hence

Then observe that t t t1 2= = = t  if and only if γ = 0. 
Therefore if r > t and

by (9) and (10) the following decision rule is obtained

Reject ifH T t r
r t

Ft t r t0 1 2
2

, 1, 1: = = = > ( 1)( 1)
( 1)

,τ τ τ α

− −
− + − − +

where T r2
2

1
2= ′ −Y S Y  and r + 1 > t.

In addition, the 100(1 - α) percent simultaneous con-
fidence bounds on all linear function a′γ are given by

a a Sa a a a Sa′ ′ ′ ′ ′ 2 , 1, 1 2 , 1, 1
1 1

− ≤ ≤ +− − + − − +T
b

T
bt r t t r tα αγ

where

T t r
r t

Ft r t t r ta a, 1, 1
2

, 1, 1= ( 1)( 1)
1

.− − + − − +

− −
− +

Observe that if instead of the assumption (13) it is 
assumed that

(14)

where

Proceeding similarly it is possible to propose an 
analogous test for the hypothesis H r0 1 2: = = =b b b . 

It is emphasised that both the decision rule as well 
as simultaneous confidence intervals under the null 
hypothesis are invariant under the family of elliptical 
distributions, i.e. these results are in accordance with 
those obtained under the assumption of normality. 

Example

An experiment was conducted in a randomised block 
design model yij i j ij= µ τ β ε+ + +  where the assump-
tions of (4) hold. The data are shown in table 1.

Block 1 2 3 4 5 6 7 8 9 10

1 30.5 23 15 24 22 17 34 20.5 30 14

2 20 18 25.5 18 33.5 14 14 26.5 13 16.5

3 24 14 24 14.5 19 24 30 32 20 2.5

4 14.5 14 18 20.5 15 24 29 15 31 20

5 28.5 28.5 27.5 15 34.5 27 17 29 26 15.5

6 16 14 13.5 18 27.5 25 8 7 13 6

7 34 20 15.5 16.5 20 21 6 21.5 4.5 19

8 37 17 21 17.5 15 26 17 26 24 22

9 19 19.5 17 17.5 20.5 18 21 24 34.5 17.5

10 37 5 18 24 17 19 14 30.5 2.5 21.5

11 27 15.5 29 18 14 32 7 13 4 25.5

12 27 28 31 16 15 18 2 10.5 28.5 14

13 14 42 15 22 17.5 8 17 4 17.5 11.5

14 23 29.5 16 20.5 26 10.5 17.5 28 2.5 2

15 18 23 29.4 28 30 11 4.5 27 5 20.5

Table 1. 
Treatments

SV  DF  SS  MS  F  p-value 
Blocks 14 888.58 63.47   

Treatments 9 1124.98 125 1.95 0.0507
Residuals 126 8078 64.11   

Total 149 10092    

Table 2. 
Analysis of Variance for the original data.

SV  DF  SS  MS  F  p-value
Blocks 14 4.99 0.3566   

Treatments 9 7.58 0.8417 2.634 0.00795
Residuals 126 40.27 0.3196   

Total 149 52.84    

Table 3. 
Analysis of Variance for the transformed data (log(yij)).

It is interesting to test the hypothesis 

H0 1 2 3 4 5 6 7 8 9 10: = = = = = = = = = .t t t t t t t t t t (15) 

 By completeness, in table 2 the analysis of vari-
ance appears, ignoring that the assumptions (4) hold 
and in table 3 the analysis of variance is performed 
with the transformed data. The computations have 
been performed with the a support of program in lan-
guage R. (Readers interested in obtaining a copy of 
this program, please contact the authors via email). 

From data in table 1 the following data are obtained

2 =
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8.766667
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and  is
181.50 78.85 87.94 106.25 30.33 81.17 23.76 111.66 44.76
78.85 89.86 556.84 75.08 46.72 38.52 35.74 68.90 51.17
87.94 56.84 83.38 79.57 31..58 71.09 34.14 65.37 52.12
106.25 75.08 79.57 134.66 42.92 72.53 64..09 75.08 41.86
30.33 46.72 31.58 42.92 69.92 48.60 10.89 67.46 37.711
81.17 38.52 71.09 72.53 48.60 164.38 57.73 138.92 28.98
23.76 35.744 34.14 64.09 10.89 57.73 78.91 28.68 11.53
111.66 68.90 65.37 75.08 667.46 138.92 28.68 221.17 53.89
44.76 51.17 52.12 41.86 37.71 28.98 111.53 53.89 73.46

.













































In which T 2 = 31.9988 with a p-value = 0.313276. This is significant 
at the 31.3 percent level; then, from an agronomic t traditional point of 
view, there is no evidence not to reject the hypothesis (15). Note that this 
conclusion is contrary to the conclusion achieved through the ANOVA 
tests, both with the original and transformed data. 

As an example and even if the null hypothesis was not rejected, below 
the 100(1 - 0.05) percent simultaneous confidence intervals present in 
all comparisons between means (µ τ µ τ τ τ+ − + −′ ′i i i i( ) = i i≠ ′) are cal-
culated (see table 4). The lower and upper limits of intervals in table 4, 
have been denoted as LI and LS, respectively. 

By the properties of coherence and consonance of the union-intersec-
tion principle of Roy (see Gabriel, 1969), all intervals contain zero, mean-
ing that all means are equal with a 100(1 - 0.05) percent simultaneous 
confidence coefficient, as expected. 

  t2 t3 t4 t5 t6 t7 t8 t9 t10

t1

LI -36.17 -26.32 -27.18 -30.67 -25.03 -39.48 -24.95 -43.19 -29.97

 LS 28.37 19.10 16.58 24.93 15.03 21.95 17.61 28.06 11.10

t2

LI -25.83 -21.20 -25.42 -31.99 -27.59 -35.19 -28.41 -25.28

 LS 25.25 24.00 23.36 34.19 37.32 34.72 35.75 36.35

t3
 

LI -16.80 -21.40 -18.12 -26.73 -23.57 -27.57 -12.88

 LS 20.18 19.92 20.90 37.05 23.69 35.49 24.53

t4

LI -20.82 -23.04 -21.15 -24.86 -29.32 -13.24

 LS 15.95 22.44 28.08 21.59 33.85 21.51

t5

LI -23.97 -23.83 -21.34 -29.66 -20.15

 LS 28.24 35.63 22.94 39.06 33.28

t6

LI -24.28 -28.34 -27.37 -15.31

 LS 31.82 25.67 32.50 24.18

t7

LI -32.18 -26.06 -31.46

 LS 21.98 23.66 32.80

t8

LI -33.42 -21.47

 LS 41.22 33.01

t9

LI -30.88

 LS 34.61

Table 4. 
Simultaneous confidence intervals, α = 0.05.

CONCLUSIONS 

Is important to emphasise that the 
proposed methodology is robust 
on all families of elliptical distri-
butions; furthermore this can be 
extended to other design models. 
The trick is to find the correspond-
ing matrix 2 that allows testing 
the hypothesis of interest. In oth-
er texts the problem presented in 
this article has been usually solved 
through nonparametric tests or by 
applying one of the diverse trans-
formations recommended on the 
original data, or a combination of 
them. See Montgomery (2005).
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