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ABSTRACT

Among quantum dots there is an interaction called Foerster interaction, it consists on the 
transfer of one exciton from a quantum dot to another in a non-radiative energy transfer 
mechanism. In this work, we develop a model of the interaction of a pair of coupled Quan-
tum Dots (QDs), each one in its own micro cavity, interacting with its own classical field

  RESUMEN

Entre los puntos cuánticos existe una interacción conocida como interacción de Foerster, 
la cual consiste en la transferencia de un excitón de un punto cuántico a otro en un meca-
nismo de transferencia de energía no radiativo. En este trabajo desarrollamos un modelo 
de la interacción de un par de puntos cuánticos acoplados (QDs por sus siglas en inglés), 
cada uno en su propia microcavidad, interactuando con su propio campo clásico.
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INTRODUCTION

For a long time scientific research in electronic systems was limited to sys-
tems as isolated atoms or particles, metals or semiconductor crystals, or 
beams of beta radiation; most of those are three-dimensional systems. In 
the early 1970s, research on electronic structures introduced an important 
development, quantum wells (Chang, Esaki & Tsu, 1974) (two-dimensional 
systems). At the beginning of the 1980s, progress in lithographic techniques 
allowed to confine electrons in a quasi one-dimensional structure, the so 
called quantum wire (Petroff, Gossard, Logan & Weigmann, 1982). Sub-
sequent publications reported a quasi-zero dimensional structure (Cibert, 
Petroff, Dolan, Pearton, Gossard & English, 1986; Kash, Scherer, Worlock, 
Craighead & Tamargo, 1986; Reed et al., 1986), quantum dots (QDs). These 
structures have important and varied scientific and technological applica-
tions (Jamieson, Bakhshi, Petrova, Pocock, Imani & Seifalian, 2007; Nozik, 
2002). When a quantum dot (QD) is in the presence of an electric field, there 
is a dipolar interaction between them, and well expected dynamics like the 
one with a Two Level Atom. However, if more than one QD is nearby, there 
is an additional quantum and non radiative coupling between the QDs, pro-
duced by the exchange of an exciton. Therefore the marriage of both interac-
tions introduces quite an interesting dynamic that is the object of this work

Semiclassical model of a pair of QDs

The physical system studied in this work is a pair of QDs labeled as system 1 
and system 2 respectively, each one in its own cavity, see figure 1. In addi-
tion, each QD is interacting with its own classical electric field through a 
dipole interaction. In order to distinguish the operators corresponding to 
each system we will use the notation σx

1 , σ
y
1 , σ

z
1 to distinguish the Pauli’s 

matrices of the system 1 from the Pauli’s matrices of the system 2, σx
2 , σ

y
2 , σ

z
2 .
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Figure 1. This picture shows the physical system studied. Each circle represents 
a QD in its cavity. The different color used for the cavities suggest they 
are interacting with different electric fields.

Source: Authors own elaboration.

We will develop a model based on the Schrödinger’s 
picture that describes the dynamics of the coupled system. 

Model

Our aim is to study a pair of QDs, each one inside its 
own micro cavity, interacting with their local electric 
field. The Hamiltonian that describes this situation is 
given by 

H H H= I0 + , (1)

where H0 is the free Hamiltonian:

 H W W= 1
2 F

z
F0 1 1 1 1ε σ σ σ( )− − + −

 W W1
2 F

z
F2 2 2 2ε σ σ σ( )+ − − + −

W .F 1 2 1 2s s s s( )− −+ − − + (2)

The last term corresponds to the Foerster interac-
tion characterized by the constant WF, ε1 and ε2 the 
band gap energy of each QD. The interaction of the 
QDs with the classical electric fields E1(t) and E2(t) is 
given by HI

. (3)

Where the dipoles of the quantum dot 1 and the 
QD 2 are given by d1 and d2 respectively.

Probability amplitude method

Let S1 and S2 represent the vector space of each sys-
tem. The basis in each one of these vector spaces are  
g e(1), (1)  and g e(2), (2)  respectively. Because of the 
Foerster coupling, the vector space of each QD are 
joined making a single system in which state space 
is the tensor product S = S1 ⊗ S2 of the two preceding 

spaces. The wave function of the QDs interaction with 
an electric field is given by  

t C t g g C t g e( ) = ( ) (1), (2) ( ) (1), (2)1 2ψ +

+ +C t e g C t e e( ) (1), (2) ( ) (1), (2)3 4 . (4)

The wave function satisfies the Schrödinger’s equation  

i t H t( ) = ( )ψ ψ . (5)

We realized that the coefficients follow the differen-
tial equations  
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To obtain the above set of equations we have done 
some considerations. Slow varying amplitude has been 
introduced, the electric fields have the explicit form 
E1(t ) = e1(t ) cos v1t  and E2(t ) = e2(t ) cos v2t and the Rabi’s 
frequencies are given by Ω1 = d1 ⋅ e1/ and Ω2 = d2 ⋅ e2/. 
QDs frequencies have been defined by ωQD1 = ε1 – 2WF 
and ωQD2 = ε2 – 2WF, the detunings are ∆1 = ωQD1 – v1 and 
∆2 = ωQD2 – v2, the difference of the QDs frequencies is 
denoted as δ = ωQD1 – ωQD2. Also we neglected the counter 
rotating terms, i.e., Rotating Wave Approximation has 
been considered. 

RESULTS

The set of equations for the coefficients was solved an-
alytically by using Laplace transform techniques. As 
a particular case we can consider that both QDs are 
identical and are in resonance with the frequency of 
their electric field. In particular, let us assume that an 
unapproachable QD is in the absence of field (Ω2 = 0).

We will carry a further analysis with experimen-
tally sensible variables for each QD, such as the 
atomic inversion 〈σz〉 and the dipole terms for each 
atom (d i= x y

1 1 1s s+  and d i= x y
2 2 2s s+ ).

We will focus our attention on one of the QDs, in or-
der to understand the dynamics of the system in terms 
of the dynamics of one of the constituents of the sys-
tem. So, we will introduce the normalization WF = AΩ1. 
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The analytic equations for the dipoles of this par-
ticular system are:  

d A iA A iA( ) = 1
2

exp 1
2

exp1 t t t( ) ( )− + −
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exp 1
4
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Writing the electric dipoles in this form, allow us 
to explain the Fourier-transform of their oscillations.

Let us start describing system 2: it presents a 
three-peaked resonance fluorescence spectrum, the 
main peak is in the origin at the field excitation fre-
quency of system 1 while the secondary peaks are lo-
cated at Rabi frequency of system 1.

On the other hand, the first system is six-peaked 
distributed in pairs; each pair is shifted an amount   
from the peaks of the isolated system (figure 2).

Figure 2. The resonance fluorescence spectrum of each system is shown. The 
blue line corresponds to the non-isolated system while the red line re-
presents the isolated system. The isolated QD has oscillations due to 
the coupling and the non-isolated system has a different structure in 
comparison with the single QD spectrum.

Source: Authors own elaboration.

Figure 3. The red line indicates the inversion of the isolated system while the blue 
line shows a modulation in the Rabi oscillations due to the coupling. 

Source: Authors own elaboration.

For the atomic inversion of the system 1 and 2, in 
the weak-coupling regime (A  1),we have the analyti-
cal result.

w A A A( ) = cos cos sin sin ,1 t t t t t( ) ( ) ( ) ( )− (9)

w A A A( ) = cos sin sin .2 t t t t( ) ( ) ( )− + (10)

In the above equations the terms contain to A as 
multiplicative factor are small, so the dominant part 
is contained in the other terms. The dominant part 
of system 2 shows Rabi oscillations for this system, 
the frequency of these oscillations is explicitly the 
strength of coupling A. On the other hand, system 1 
presents Rabi oscillations at Rabi frequency, but its 
oscillations are modulated by the inversion of the iso-
lated system (figure 3).

CONCLUSIONS

The use of the Schroedinger’s picture allows us to find 
the analytical solutions of the system. We have shown 
results for resonant condition assuming quantum 
identical dots.

As a particular case we have assumed a null electric 
field amplitude for the isolated system. Analyzing the 
non-isolated system we can obtain information about 
the coupling. Because of the coupling there is time 
evolution of the population inversion of the system 
even in absence of electric field interactions. The in-
version of the isolated system is basically oscillating at 
coupling frequency. The inversion of the non-isolated 
system is oscillating at Rabi frequency but these oscil-
lations are modulated by the coupling frequency.

The dipole of the isolated system has oscillations 
which give a three-peaked spectrum. The dipole of the 
non-isolated system has a six-peaked spectrum. Each 
peak is shifted with regard to the origin and respect to 
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the Rabi’s frequency. These shifts are evidence of the 
coupling, also they give its strength. 
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