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Amplitude variation in fractional multiple-interference 
on N-beams
Variación de la amplitud de interferencia múltiple fraccional de N-haces
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ABSTRACT

Multiple periodic patterns by light interference are a complicated problem from an experimen-
tal point of view. We report a theoretical model of the incidence of N beams of light at one point 
in space. Two components of the electric field are projected: azimuthal (angle formed with the 
projection of the vector in space on the x-y plane) and zenithal (angle of the incident vector 
with the z-axis). As a result, azimuthal intensity and zenithal intensity are found. The case of 
fractional amplitude or fractional number of beams is analyzed. When the phase is modified, 
the process allows us to visualize the change of geometry. Quasi-lineal patterns to maximum 
and minimum concentric circles are observed. Some applications of these patterns can be 
found in sensors and engraving in some lithography processes.

RESUMEN

Los patrones periódicos múltiples por interferencia de luz son un problema complicado desde 
un punto de vista experimental. En este trabajo reportamos un modelo teórico de incidencia 
de N haces de luz sobre un punto en el espacio. Dos componentes del campo eléctrico son 
proyectados: azimutal (ángulo formado con la proyección del vector en el espacio sobre el 
plano x-y) y zenital (ángulo del vector incidente con el eje z). En consecuencia, encontramos 
la intensidad azimutal y zenital. Analizamos el caso de amplitud fraccional o número de ha-
ces fraccionario. Cuando el cambio de fase es modificado, nos permite visualizar el proceso 
de cambio de la geometría. Observamos patrones cuasi-lineales, circulares concéntricos de 
máximos y mínimos. Algunas aplicaciones de estos patrones pueden encontrarse en sensores 
y grabado en procesos de litografía.

*Departamento de Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato. Carretera Salamanca-Valle Km 3.5 + 1.8, Comunidad Palo Blanco, 
Salamanca, Gto. México.  E-mail: ealvarad@ugto.mx; mtrejo@ugto.mx; estudillo@ugto.mx; rlaguna@ugto.mx 
 

Recibido: 8 de junio de 2012
Aceptado: 31 de marzo de 2013

INTRODUCTION

Periodic patterns in nature are often critical to some species of animals or 
insects for survival reasons. For example, the colors in butterfly wings often 
reflect light, which can frighten predators wrongly assuming this is a poiso-
nous species. Similar structures and patterns have been found in diatoms. 
Diatoms are unicellular, eukaryotic, photosynthetic algae of an enormous 
ecological importance on this planet that display a diversity of patterns and 
structures at the nano-to-millimeter scale (Gordon, Losic, Tiffany, Nagy & 
Sterrenburg, 2008). From the physical point of view, these are very interes-
ting due to their multifarious possible properties such as anti-reflection (Li, 
Zhang & Yang, 2010), and super-hydrophobia (Wu et al., 2011), and they 
have been found in different disciplines such as solid-state physics, biolo-
gy, Faraday waves and nonlinear optics (Staliunas, Longhi & De Valcárcel, 
2002). A variety of applications have been developed such as organic light-
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Figure 2. Interference pattern of 6 beams: (a) I6 (||) and (b) I7 (||). The azi-

emitting diode (OLED), solar cells, and self-cleaning 
surfaces (Liu et al., 2012). To produce these patterns, 
different configurations have been developed such as 
direct laser writing (Lin, Chen, Niu, Jiang, Wang & Sun, 
2010), lithography (Levenson, Viswanathan & Simp-
son, 2010), two optical beams interference patterns 
(Menezes, Cescato, De Calvalho & Braga, 2006), and 
multiple beam interference (Lin, Rivera, Poole & Chen, 
2006). Recently, the interference of N beams has been 
studied theoretically (Jiménez-Ceniceros, Trejo-Durán, 
Alvarado-Méndez & Castaño, 2010). In this paper, two 
sets of polarization vectors are considered on the ba-
sis of the electric field selected symmetry: zenithal and 
azimuthal polarization. Different periodic patterns were 
found, depending on the azimuthal or zenithal angle. 
However, these periodic patterns correspond to an N 
beams integer, and the fractional beams case has not 
been explored. In this paper, we show the case of frac-
tional interference between 6 and 7 beams that allows 
us to understand how periodic patterns are formed.

Mathematical model

Let us consider a set of N beams impinging radially on 
a point onto a screen (figure 1), with the same coheren-
ce degree, amplitude and phase. Each n wave is consi-
dered a plane wave, 

                                                                                 (1)

where ρ=xî+yĵ+zk ; the n-total waves are,

ΨN=∑n=1 Ψn= exp(― iωt) ∑n=1 An exp[i(kn. ρ)+ єn)],
→ → → →N N              (2)

Ψ=Anexp[i(kn. ρ ― ωt + єn)],
→ → →

Figure 1. N light beams coincide radially on a point, with cylindrical symmetry.
                 A few light beams of the ensemble are shown.
Source: Authors own elaboration.
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The intensity of the electric field is average tem-
poral of the square module. We have azimuthal (the 
angle of the incident beam with the z-axis,f) and ze-
nithal (the angle formed with the projection of the vec-
tor in space on the x-y,θ) symmetry. Mathematically, 
the conditions of these angles are φn= φn; and θn=2n/N ; 
we use spherical coordinates due to the symmetry of 
the incidence beams. The mathematical expression of 
the intensity is,

IN = ∑m=1∑n=1Am.AnRe{exp[i(km― kn).ρ+(єm― єn])}, 

→ →→ → →N N            (3)

where km= kcosθmsinφî+ksinθmsinφĵ  ― ksinθk→
; with al-

gebra we can obtain the intensity with azimuthal polari-
zation (Jiménez-Ceniceros et al., 2010),

 
(km― kn).ρ = 2ksinθ sin[(m-n)]{sin[(m+n)]x― cos [(m+n)]y},→ → →

—N —N —N    
                    (km― kn).ρ = 2ksinθ sin[(m-n)]{sin[(m+n)]x― cos [(m+n)]y},→ → →

—N —N —N
,              (4)

IN = (||) = A2cos2(φ)∑m=1∑n=1cos[2(m+n)]cos[2k(Cm,nx―Qm,ny]. N N —N  

             IN = (||) = A2cos2(φ)∑m=1∑n=1cos[2(m+n)]cos[2k(Cm,nx―Qm,ny]. N N —N          (5) 

In this configuration, the m-components of the polariza-
tions are radially distributed in the  r-θ  plane, which we 
called the radial component.

Numerical simulations

Equation (5) shows the general mathematical model 
of interference. 

The radial component, IN (||), for the case of 6 
interference beams (figure 2a) hexagonal patterns is 
formed. These patterns are very interesting because 
they show rotational symmetry, but not translational. 
Figure 2b shows a formation of rings in the center su-
rrounded by bright spots with rotational symmetry. 
The zenithal angle is 4 /9φ π=

muthal angle is φ = 4/9.
Source: Authors own elaboration.

(a) (b)
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The case of the fractional number of the beams 
is possible to explore of the numerical point of view. 
The change of geometry can be found by selecting the 
fractional number of beams. In this paper we only 
analyze the radial component, IN (||). Figure 3 shows 
the sequence of interference patterns to 6.2, 6.4, 6.6, 
6.8 beams. Figure 3(a) corresponds to N = 6.2, the 
hexagonal pattern presenting oscillations in ampli-
tude. At the center of each hexagon, a dark hole is 
observed. Figure 3(b) shows the case N = 6.4, and 
the central hexagon is distorted using two maximum 
intensities. The same behavior is observed using two 
aligned neighboring hexagons. The top two hexagons 
are similar to each other, but the distribution of the 
energy is not symmetric. The same case is observed 
for the two lower hexagons. Figure 3(c) represents the 
N = 6.6 case and the filamentation for each hexagon 
is observed. The three aligned hexagons are filamen-
ted in two new spots. Each of the upper and lower 
hexagons start developing filamentats into three new 
beams. It is also interesting to note that the upper 
and lower new structures have maximum intensities. 
In other words, the energy distribution is asymme-
tric. Figure 3(d) shows the case of N = 6.8. The three 
aligned hexagons are split into two new beams sym-
metrically, but a remnant of energy interacts with the 
two new spots, and a circular structure is formed. 
This will give rise to new spots of beams with circular 
symmetry as figure 2(b) shows. These three aligned 
originals hexagons was rotated 17.5° and the central 
hexagon was converted into a rhombus, while the 
central spot changes from a circular to an elliptical 
shape.

To analyze how the ring is formed, numerical pre-
cision in the fractional N value is necessary. Figure 4 
corresponds to N = 6.9995 and the same value of the 
azimuthal angle 4 /9φ π= . The central spots are su-
rrounded by remnants of energy from the other spots 
of light. We finally obtain the energy distribution shown 
in figure 2b, when N = 7.

CONCLUSIONS

We have demonstrated theoretically the interference 
of N beams with azimuthal and zenithal components. 
The case of fractional amplitude or fractional number 
of the beams allows us to understand transient states 
between different geometries corresponding to integer 
values. The transition of the hexagon periodic patterns to 
one ring surrounded by circular spots of light is due 
to amplitude variations and energy interchange. The 
azimuthal angle affects the energy exchange.

Figure 3. Fractional beams interference. (a) N = 6.2; (b) N = 6.4; (c) N = 6.6, 
and N = 6.8 beams. The azimuthal angle is φ = 4/9 in all cases. 

Source: Authors own elaboration.

Figure 4. Ring formation around of the central spots using N = 6.9995 and 
φ = 4/9 .

Source: Authors own elaboration.
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