Modeling of cracking in concrete structures: smeared and discrete crack approach

Abstract

The aim of this work is to simulate the cracking in concrete structures by means of two approaches: smeared crack and discrete approaches. Two case studies were analyzed: a beam with ordinary reinforcement and a dapped-end beam modeled by three-dimensional finite elements. Firstly, the smeared crack approach was used to locate the cracking zone in both case studies. Subsequently, to simulate the crack width, the discrete crack approach was used by applying a cohesive zone model making use of a function that represents the crack opening. The obtained results were validated with experimental results. This investigation provides the efficiency and application of the two approaches to estimate crack appearance and width for reinforced concrete structures.

https://doi.org/10.15174/au.2019.1641
HTML (Español (España))
PDF (Español (España))
XML (Español (España))

References

ANSYS (2006). “Documentation for ANSYS”. ANSYS Workbench Release v. 11.0. ANSYS Inc. USA

Bažant, Z. P., & Lin, F. (1988). Nonlocal smeared cracking model for concrete fracture. Journal of Engineering Mechanics. ASCE, 114(11), 2493-2510.

Bažant, Z. P., & Oh, B. H. (1983). Crack band theory for fracture of concrete. Materials and Structures. RILEM, 155-177.

Barbhuiya, S., & Choudhury, A. M. (2015). A study on the size effect of RC beam-column connections under cyclic loading. Engineering Structures, 95, 1-7. doi: http://dx.doi.org/10.1016/j.engstruct.2015.03.052

Cornelissen, H., Hordijk, D., & Reinhardt, H. W. (1986). Experimental determination of crack softening characteristics of normal weight and lightweight concrete. HERON, 31(2), 45-56.

Corr, D., Accardi, M., Graham-Brady, L., & Shah, S. (2007). Digital image correlation analysis of interfacial debonding propierties and fracture behavior in concrete. Engineering Fracture Mechanics, 74, 109-121. doi: 10.1016/j.engfracmech.2006.01.035

Eurocode 2 (2007). Calcul des Structures en béton, NF-EN-1992.

Gálvez, J. C., & Cendón, D. A. (2002). Simulación de la fractura del hormigón en modo mixto. Revista Internacional de Métodos Numéricos para cálculo y Diseño en Ingeniería, 18(1), 31-58.

Gopalaratnam, S., & Shah, S. (1985). Softening response of plain concrete in direct tension. Structural Journal, ACI, 82, 310-323.

Hild, F., Roux, S. Bernard, D., Hauss, G., & Rebai, M. (2013). On the use of 3D images and 3D displacement measurements for the analysis of damage mechanics in concrete-like materials, in: Conference proceeding, plenary lecture, FraMCoS-8.

Hillerborg, A., Modéer, P. E., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Res. 6(6), 773-782.

Ichinose, T., Kanayama, Y., Inoue, Y., & Bolander Jr. J. E. (2004). Size effect tests on bond strength of deformed bars. Construction and Building Materials, 18(7), 549-58. doi: http://dx.doi.org/10.1016/j.conbuildmat.2004.03.014

Jin, L., Li, D., & Su, X. (2016). Mechanical behavior and size effect of moderate high-strength RC columns under monotonic and cyclic axial compression. Engineering Structures, 124, 269-85. doi: http://dx.doi.org/10.1016/j.engstruct.2016.06.030

Kobayashi, A. S., Hawkins, M. N., Barker, D. B., & Liaw B. M. (1985). Fracture process zone of concrete, in: S.P. Shah (Ed.) Application of Fracture Mechanics to Cementitious Composites, Martinus Nijhoff Publ., Dordrecht, 25-50.

Moreno-Martínez, J. Y., & Meli, R. (2014). Experimental study on the structural behavior of concrete dapped-end beam. Engineering Structures, 75, 152-163. doi: 10.1016/j.engstruct.2014.05.051

Mosalam, K.M., & Paulino, G. H. (1997). Evolutionary characteristic length method for smeared cracking finite element models. Finite Element in Analysis and Design, 27, 99-108.

Nilson, A. H. (1982). State-of-the-art report-finite element analysis of reinforcement concrete. ASCE 114 (11), 2493-2510.

Padmarajaiah, S. K., & Ramaswamy, A. (2002). A finite element assessment of flexural strength of prestressed concrete beams with fiber reinforcement. Cement and Concrete Composites, 24, 229-241.

Planas, J., & Elice, M. (1986). Towards a measure of GF: An analysis of experimental results. Fracture Toughness and Fracture Energy of Concrete, F.H. Wittmann (Ed.), Elsevier, 381-390.

Polak, M. A. & Vecchio, F. (1993). Nonlinear analysis of reinforced concrete shell, Journal of Structural Engineering, 119(2), pp. 3439-3462.

Prestressed Concrete Institute (1999). “PCI Design Handbook”. Sixfth Edition, Chicago, Illinois, pp. 4-79~4-83.

Rashid, Y.R, (1968). Analysis of prestressed concrete pressure vessels, Nuclear Engineering and Design, 29 (4), 334-344.

Reinhardt, H. W. (1984). Fracture mechanics of an elastic softening material like concrete, Heron, 29(2).

Shah, S. & Choi, S. (1998). Nondestructive techniques for studying fracture processes in concrete. International Journal of Fracture, 98, 351-359.

Syroka-Korol, E., Tejchman, J. & Mróz, Z. (2015). Experimental investigation of size effects of fluctuating local tensile strength on coupled energetic-statistical size effect in concrete beams. Engineering Structures, 103, 239-59. http://dx.doi.org/10.1016/j.engstruct.2015.09.011

Vandewalle, L. (2000). Cracking behavior of concrete beams reinforced with a combination of ordinary reinforcement and steel fibers, 33, 164-170.

William, K. J., & Warnke E. D. (1975). Constitutive model for the Triaxial Behavior of Concrete. Proceedings, International Association for Bridge and Structural Engineering, 19, 174.

Yerlici, V. A., & Ozturan T. (2000). Factors affecting anchorage bond strength in high-performance concrete. ACI Structural Journal, 97(3), 499-507. URL: http://worldcat.org/oclc/13846957

Zienkiewicz, O. C., & Zhu J. Z. (1992). The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique, International Journal for Numerical Methods in Engineering, 33, 1331-1364.