Validación de un instrumento para medir la aceptación tecnológica de un entorno virtual de aprendizaje


Los Entornos Virtuales de Aprendizaje (EVA) proveen una plataforma para lograr que la educación a distancia sea más conveniente y accesible para los estudiantes. Aunque los EVA actualmente cuentan con gran demanda, su aceptación necesita ser evaluada. En esta investigación, se validó un instrumento que mide la aceptación tecnológica de un EVA. Aplicando un análisis factorial confirmatorio, se validó un instrumento compuesto por 15 ítems y cinco factores. Los resultados muestran que el ajuste general del modelo fue satisfactorio y que todas las correlaciones entre los factores latentes fueron mayores de 0.48. Se encontró que la evaluación de la aceptación tecnológica es muy importante porque el éxito depende en gran medida de la acogida favorable de profesores, investigadores y líderes educativos.
HTML (English)


Atkinson, T. M., Rosenfeld, B. D., Sit, L., Mendoza, T. R., Fruscione, M., Lavene, D., and Basch, E. (2011). Using Confirmatory Factor Analysis to Evaluate Construct Validity of the Brief Pain Inventory (BPI). Journal of Pain and Symptom Management, 41(3), 558–565.

Bender, K., Donohue, S. & Heywood, J. (2005). Job satisfaction and gender segregation. Oxford Economic Papers, 57(3), 479-496. doi: 10.1093/oep/gpi015

Bennell, P., and Pearce, T. (2003). The internationalisation of higher education: exporting education to developing and transitional economies. International Journal of Educational Development, 23(2), 215–232.

Boelen, P. A., van den Hout, M. A., and van den Bout, J. (2008). The factor structure of Posttraumatic Stress Disorder symptoms among bereaved individuals: A confirmatory factor analysis study. Journal of Anxiety Disorders, 22(8), 1377–1383.

Bosch, T. Mathiassen, S.E., Visser, B., de Looze, M.P., and van Dieën, J.H. (2011). The effect of work pace on workload, motor variability and fatigue during simulated light assembly work. Ergonomics 54(2), 154-168. doi: 10.1080/00140139.2010.538723.

Bovaird, J.A., and Koziol, N.A. (2012). Measurement models for ordered categorical indicators in structural equation modeling. In R.H. Hoyle, D. Kaplan, Marcoulides, & S. West (Eds.), Handbook of structural equation modeling. New York, NY: The Guilford Press.

Britto, M. (2005). Frameworks for CMS Design and Evaluation. In Carmean, C. & Jafari, A. (eds.) (2005). Course Management Systems for Learning: Beyond Accidental Pedagogy. Hershey, Penn.: Idea Group.

Browne, M. W., and Cudeck, R. (1992). Alternative Ways of Assessing Model Fit. Sociological Methods & Research, 21(2), 230–258.

Clark, J. M., and Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149–210.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319.

DeVellis, R. F. (2016). Scale development: theory and applications (Fourth edition). Los Angeles: SAGE.

Garrison, D. R. (2011). E-learning in the 21st century: A framework for research and practice. New York: Routledge.

Garrison, D. R., and Kanuka, H. (2004). Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education, 7(2), 95–105.

Gisbert, M. (2005). Evaluación de la calidad de la formación on-line. In TEL 2005 I Jornadas: Tendencias sobre eLearning 2005 (pp. 101–107). Madrid.

Govindasamy, T. (2001). Successful implementation of e-Learning. The Internet and Higher Education, 4(3–4), 287–299.

Hu, L., and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.

Kahai, S. S., and Cooper, R. B. (2003). Exploring the Core Concepts of Media Richness Theory: The Impact of Cue Multiplicity and Feedback Immediacy on Decision Quality. Journal of Management Information Systems, 20(1), 263–299. JOUR. Retrieved from

Kimberlin, C. L., and Winterstein, A. G. (2008). Validity and reliability of measurement instruments used in research. American Journal of Health-System Pharmacy, 65(23), 2276–2284.

Kismiantini, -, Montesinos Lopez, O. A., García Martínez, J. J., and Franco Pérez, E. (2014). Analyzing the Factors of Job Satisfaction in a Mexican Hospital with Binary Indicators by Confirmatory Factor Analysis, 9(8), 61–83.

Kline, R.B. (2011). Principles and practice structural equation modeling. New York, NY: The Guilford Press.

MacCallum, R. C., and Browne, M. W. (1993). The use of causal indicators in covariance structure models: Some practical issues. Psychological Bulletin, 114(3), 533–541.

Malhotra, N. K. (1997). Investigación de mercados. Un enfoque práctico. México: Prentice Halll.

Mayer, R. E. (2009). Multimedia learning. NY: Cambridge university press.

McArdle, J. J. (1996). Current Directions in Structural Factor Analysis. Current Directions in Psychological Science, 5(1), 11–18.

Moore, J. L., Dickson-Deane, C., and Galyen, K. (2011). e-Learning, online learning, and distance learning environments: Are they the same? The Internet and Higher Education, 14(2), 129–135.

Moore, M. G., and Kearsley, G. (2011). Distance education: A systems view of online learning. California: Wadsworth.

MPLUS (Version 6.11). [Computer Software]. Los Angeles, CA: Muthén & Muthén.

Mueller, D., and Strohmeier, S. (2011). Design characteristics of virtual learning environments: state of research. Computers & Education, 57(4), 2505–2516.

Newsom, J. T. (2012). Some clarifications and recommendations on fit indices. USP, 655, 123-133. Retrieved from

Li, Y., and Baser, R. (2012). Using R and WinBUGS to fit a generalized partial credit model for developing and evaluating patient-reported outcomes assessments. Statistics in Medicine, 31(18), 2010–2026.

Liaw, S. S., Huang, H. M., and Chen, G. D. (2007). Surveying instructor and learner attitudes toward e-learning. Computers and Education, 49(4), 1066–1080.

Lin, S.-C., Persada, S. F., and Nadlifatin, R. (2014). A study of student behavior in accepting the Blackboard Learning System: A Technology Acceptance Model (TAM) approach. In Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 457–462). IEEE.

Padilla-Meléndez, A., Del Águila-Obra, A. R., y Garrido-Moreno, A. (2014). Empleo de moodle en los procesos de enseñanza-aprendizaje de dirección de empresas: nuevo perfil del estudiante en el EEES. Educación XX1, 18(1).

Paechter, M., Maier, B., and Macher, D. (2010). Students’ expectations of, and experiences in e-learning: Their relation to learning achievements and course satisfaction. Computers & Education, 54(1), 222–229.

Pituch, K. A., and Lee, Y. (2006). The influence of system characteristics on e-learning use. Computers & Education, 47(2), 222–244.

Richardson, J. C., and Swan, K. (2003). Examining social presence in online courses in relation to students’ perceived learning and satisfaction. Journal of Asynchronous Learning Network, 7(1), 68–88.

Salmerón-Pérez, H., Rodríguez-Fernández, S., and Gutiérrez-Braojos, C. (2010). Methodologies to Improve Communication in Virtual Learning Environments. Comunicar, 23(45), 163–171.

Sánchez, R. A., and Hueros, A. D. (2010). Motivational Factors That Influence the Acceptance of Moodle Using TAM. Comput. Hum. Behav., 26(6), 1632–1640.

Simonson, M., Smaldino, S., Albright, M., and Zvacek, S. (2000). Teaching and Learning at a Distance: Foundations of Distance Education. Upper Saddle River, NJ: Merrill.

Strauss, M. E., and Smith, G. T. (2009). Construct Validity: Advances in Theory and Methodology. Annual Review of Clinical Psychology, 5(1), 1–25.

Šumak, B., Polancic, G., and Hericko, M. (2010). An Empirical Study of Virtual Learning Environment Adoption Using UTAUT. In 2010 Second International Conference on Mobile, Hybrid, and On-Line Learning (pp. 17–22). IEEE.

Tavakol, M., and Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55.

Tiene, D. (2000). Online Discussions: A Survey of Advantages and Disadvantages Compared to Face-to-face Discussions. J. Educ. Multimedia Hypermedia, 9(4), 371–384. Retrieved from

Tuckman, B. W. (2007). The effect of motivational scaffolding on procrastinators’ distance learning outcomes. Computers & Education, 49(2), 414–422.

van Raaij, E. M., and Schepers, J. J. L. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838–852.

Venkatesh, V., and Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manage. Sci., 46(2), 186–204. article.

Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425–478. JOUR. Retrieved from

Yu, C.Y. and Muthen, B. (2002). Evaluation of model fit indices for latent variable models with categorical and continuous outcomes (Technical report). Los Angeles, CA: University of California at Los Angeles, Graduate School of Education & Information Studies.

Zubieta García, J. y Rama Vilate, C. (2015). La Educación Superior a Distancia en México. Una propuesta para su análisis histórico. La Educación a Distancia en México: Una nueva realidad universitaria. UNAM. Retrieved from