Contribution of manufacturing subsectors in the variation of CO2 emissions from the use of fuel in San Luis Potosí, México

Abstract

The analysis of the variation of carbon dioxide (CO2) provides useful information for reduction alternatives. In the present study, a decomposition of the factors that determine the annual variation of CO2 emissions was performed, identifying the effect of each of the manufacturing subsectors of San Luis Potosí, Mexico, during the period 2000-2012. The Log Mean Divisia Index (LMDI) approach was used to identify the disaggregated contribution of manufacturing subsectors in the variation of emissions, according to the Kaya equation. Energy intensity and the manufacturing Gross Domestic Product (GDP) were the factors with a greater effect on the variation of CO2, with contributions of 53.85% and 37.32% respectively. The subsectors of manufacturing products based on non-metallic minerals, primary metals industry, and food industry are mainly affecting the dynamics of the factors identified.

https://doi.org/10.15174/au.2019.1920
HTML (Español (España))
PDF (Español (España))
XML (Español (España))

References

Agnolucci, P., Ekins, P., Iacopini, G., Anderson, K., Bows, A., Mander, S. & Shackley, S. (2009). Different scenarios for achieving radical reduction in Carbon emissions: A decomposition analysis. Ecological Economics, 68(6), 1652-1666.

Alcántara, V. & Padilla, E. (2005). Análisis de las emisiones de CO2 y sus factores explicativos en las diferentes áreas del mundo. Revista de Economía Crítica, Núm. 2(4), 17-37.

Alves, M. R. & V. Moutinho. (2013). Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors, CEFAGE-UE Working Paper 2013/10.

Ang, B. W. & Choi, K. H. (1997). Decomposition of aggregate energy and gas emission intensities for industry: A refined Divisia index method. Energy Journal, 18 (3), 59-73.

Chen, L., Yang, Z. & Chen, B.2013). Decomposition analysis of energy-related industrial CO2 emissions in China. Energies, 6(5), 2319-2337.

Diakoulaki, D. & Mandaraka, M. (2007). Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. Energy Economics, 29 (4), 636–664.

Gutiérrez, M. T. Inventario de emisiones de gases de efecto invernadero del sector industrial de San Luis Potosí: proyección al 2020 y propuesta de mitigación. (Tesis de doctorado, Universidad Autónoma de San Luis Potosí, 2015), 269-270.

Gutiérrez, M. T., Medellín, P. & Abrego C. J. (2016). Factores determinantes de las emisiones de CO2 asociadas al uso de combustibles en el sector industrial de San Luis Potosí. Investigación y Ciencia, 24(68), 22-28.

Hamit-Haggar, H. (2012). Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energy Economics, 34(1), 358-364.

INEGI. Sistema de cuentas nacionales de México. (2000, 2004, 2010). Producto interno bruto por entidad federativa. Instituto Nacional de Estadística, Geografía e Informática. México.

IPCC. (2007). Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, 107.

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, 11.

Lee, C.F. & Lin, S.J. (2001). Structural decomposition of CO2 emissions from Taiwan’s petrochemical industries. Energy Policy, 29(3), 237–244.

Lee, K. & Oh, W. (2006). Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method. Energy Policy, 34(17), 2779–2787.

Liu, L.-C., Fang, Y., Wu, G. & Wei, Y.-M. (2007). Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy, 35(11), 5892–5900.

Marrero, G. A. & Ramos-Real, F. J. (2013). Activity sectors and energy intensity: Decomposition analysis and policy implications for European countries (1991–2005). Energies, 6, 2521-2540.

O'Mahony, T. (2013). Decomposition of Ireland’s carbon emissions from 1990-2010: an extended Kaya identity. Energy Policy, 59(8), 573-581.

Sahu, S. & Narayanan, K. (2010). Decomposition of industrial energy consumption in Indian manufacturing: the energy intensity approach. “Frontier Issues in Technology, Development and Environment”, 1-29.

Samaniego, J. L. & Galindo, L. M. (2009). Escenarios de emisiones de gases de efecto invernadero asociados a combustibles fósiles y cemento en América Latina. Economia Informa, 360, 40-66.

Szép, T. S. (2013). Eight methods for decomposing the aggregate energy intensity of the economic structure. Club of Economics in Miskolc, 9(1), 77-84.

Tapia, J. A., Edward, L. I. & Carpintero, O. 2012). Climate change and the world economy: short-run determinants of atmospheric CO2. Environmental Science and Policy, 21(8), 50-62.

Wang Ch., Wang F., Zhang, H., Ye, Y., Wu, Q. & Su, Y. (2014). Carbon emissions decomposition and environmental mitigation policy recommendations for sustainable development in Shandong province. Sustainability, 6(11), 8164-8179.

Yue, T., Long, R., Chen, H. & Zhao, X. (2013). The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach. Applied Energy, 112(12), 1510-1517.

Zhang, M., Mu, H. & Ning, Y. (2009). Accounting for energy-related CO2 emission in China, 1991–2006. Energy Policy, 37(3), 767–773.

Zhao, M.; Tan, L.; Zhang, W.; Ji, M.; Liu, Y. & Yu, L. (2010). Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy 35(6), 2505–2510.