Recycled light-weight construction materials and their effect on electricity consumption in low-cost housings


An efficient architecture is an integral part of sustainable development; therefore, it should include an envelope able to adapt to the climate and the constructive resources of the region. The evaluation of the thermal behavior of buildings by dynamic simulation is used worldwide to evaluate the energy efficiency of buildings. In Mexico, there is a lack of data on the thermal properties of the construction materials. In this paper, the thermal conductivity, specific heat and volumetric density of local construction materials, such as red common brick, light-weight block, natural cement-sand mortars, and recycled cement-sand mortars, made with recycled materials of concrete demolition, are obtained experimentally. The simulation results obtained show a decrease in the heat gains in walls and in the electricity consumptions for cooling. The decrease is over 8% when constructive systems conformed by lightened and recycled materials are used.
HTML (Español (España))
PDF (Español (España))
XML (Español (España))


American Society for Testing and Materials, (2008). Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Roc by Thermal (Vol.D5334-08): American Society of Testing and Materials.

Barros, A., Caballero, J. M., y Zaldo, V. (1981). Aplicaciones del cemento reforzado con fibra de vidrio. Informes de la Construcción, 33, (333), pp. 73-81.


Clarke, J.A. & Hensen, J.L.M., (2015). Integrated building performance simulation: Progress, prospects and requirements. Building and Environment (91), pp. 294-306. doi.or.g/10.1016/j.buildenv.2015.04.002.

Decagon Devices Inc. (2013). KD2 Pro Thermal Properties Analyzer Operator´s Manual Version 12 (pp72): Decagon Devices INC.

Del Río, M., Santa Cruz, J., González, M. (2005). Morteros Aligerados con Arcilla Expandida: Influencia de la Granulometría y la Adición de Fibras de Vidrio AR en el Comportamiento Mecánico. Informes de la Construcción, 57(497), 39-46.

Design Builder (2015). Design Builder Energy Plus Simulation Documentation: for Design Builder v4.2.0.054. Recuperado de

Huang, Y. & Niu, J., (2016). Optimal building envelope design based on simulated performance: History, current status and new potentials. Energy and Buildings. (117), pp. 387-398.doi: 10.1016/j.enbuild.2015.09.025.

Hong, T., Chou, S.K. & Bong, T.Y. (2000). Building simulation: an overview of developments and information sources, Building and Environment, 35 (1), pp. 347–361.

K.S. Al-Jabri, A.W. Hago, A.S. Al-Nuaimi, & A.H. Al-Saidy, (2005). Concrete blocks for thermal insulation in hot climate. Cement and Concrete Research, (35), pp.1472-1479.

Marco, J., García, E., Más, M.I., Alcaraz, V., y Luizaga, A. (2012). Estudio de la resistencia a compresión de morteros fabricados con conglomerante compuesto de polvo de vidrio. Informes de la Construcción, 64(528), 529-536.

NMX-C-021-ONNCCE (2010). Industria de la construcción-Cemento para albañilería (Mortero) Especificaciones y métodos de ensayo. México: DOF.

Remund J. & Kunz, S. (2013). METEONORM, Global meteorological database for solar energy and applied climatology. Bern, Switzerland: Meteotest Fabrikstrasse.

Serrano T., Borrachero M.V., Monzó J. M., Payá J. (2012). Morteros aligerados con cascarilla de arroz: Diseño de mezclas y evaluación de propiedades. Dyna, vol. 79 (175), pp. 128-136.

Spitler, J.D., (2006). Building performance simulation: the now and the not yet. HVAC&R Research. (12), pp.711-713.

World Commission on Environment and Development. (1987). Our Common Future (Brundtlland Report), United Nations. London, Oxford University. pp.383.