Thermal-fluid dynamic study of a laboratory level prototype of a solar water heater that reuses plastic bottles

Abstract

This work presents an investigation of the performance of a solar water heater made of plastic bottles (recycled material). The study was carried out through numerical simulations with the computational fluid dynamics (CFD) and tests at a laboratory level prototype that reuses plastic bottles of polyethylene terephthalate (PET). Water is heated through the reception of the solar radiation on the surface of the PET bottle. The prototype was made of plastic filament called polylactic acid (PLA) using a 3D printing. The results showed that the solar water heater that reuses PET bottles reaches a maximum temperature of 315 K (42 ºC). The validation of the CFD numerical model was made with the experimental results, obtaining relative errors less than 1.69%. This work presents an investigation of the performance of a solar water heater made of plastic bottles (recycled material). The study was carried out through numerical simulations with the computational fluid dynamics (CFD) and tests at a laboratory level prototype that reuses plastic bottles of polyethylene terephthalate (PET). Water is heated through the reception of the solar radiation on the surface of the PET bottle. The prototype was made of plastic filament called polylactic acid (PLA) using a 3D printing. The results showed that the solar water heater that reuses PET bottles reaches a maximum temperature of 315 K (42 ºC). The validation of the CFD numerical model was made with the experimental results, obtaining relative errors less than 1.69%.

https://doi.org/10.15174/au.2019.2147
PDF (Español (España))

References

Aguilar Viveros, F. G. (2011). Diseño e instalación de un sistema de calentamiento solar para un hotel en la ciudad de Veracruz. Universidad Veracruzana.

ANSYS, Inc., 2015. Fluent, ANSYS-FLUENT User’s Guide. Release 15.0. ANSYS, Inc., Canonsburg, PA.

Amiridou, D., & Voutsa, D. (2011). Alkylphenols and phthalates in bottled waters. Journal of Hazardous Materials, 185(1), 281–286. https://doi.org/10.1016/j.jhazmat.2010.09.031

ASHRAE. (2009). Ashrae Handbook:Fudamentals. ( refrigeration and air-conditioning engineers American Society of heating, Ed.) (Vol. 30329).

Ashrae handbook-Fundamentals. (1992). Thermal environmental conditions for human occupancy. Atlanta, GA.

Bach, C., Dauchy, X., Chagnon, M. C., & Etienne, S. (2012). Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. Water Research, 46(3), 571–583. https://doi.org/10.1016/j.watres.2011.11.062

Bach, C., Dauchy, X., Severin, I., Munoz, J. F., Etienne, S., & Chagnon, M. C. (2014). Effect of sunlight exposure on the release of intentionally and/or non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and in vitro toxicity. Food Chemistry, 162, 63–71. https://doi.org/10.1016/j.foodchem.2014.04.020

Berryman, D., Houde, F., DeBlois, C., & O’Shea, M. (2004). Nonylphenolic compounds in drinking and surface waters downstream of treated textile and pulp and paper effluents: A survey and preliminary assessment of their potential effects on public health and aquatic life. Chemosphere, 56(3), 247–255. https://doi.org/10.1016/j.chemosphere.2004.02.030

Byron Bird, R., E. Stewart, W., & N. Lightfoot, E. (2006). Fenomenos de transporte (segunda). Wisconsin.

Careaga Muñoz, A. M. (2015). Evaluación de la viabilidad de un calentador solar de agua hecho con polietileno tereftalato para uso domiciliario en base a las condiciones ambientales prevalecientes en la ciudad de Xalapa, Veracruz. Universidad Veracruzana.

Contreras Trejo, J. D. (2012). Diseño e implementación de un calentador solar elaborado a base de material recicaldo para la casa UV en Coyoplan, Veracruz.

Del Angel, A., & Sarmiento, A. (2004). Sistema solar de calentamiento del agua del albergue de “ Temaxcalapa, Veracruz,” XXV(1), 60–67.

Fan, Y. Y., Zheng, J. L., Ren, J. H., Luo, J., Cui, X. Y., & Ma, L. Q. (2014). Effects of storage temperature and duration on release of antimony and bisphenol A from polyethylene terephthalate drinking water bottles of China. Environmental Pollution, 192, 113–120. https://doi.org/10.1016/j.envpol.2014.05.012

Harukara, A. (2004). Solar water heater. China.

Luján, A. F., Isaza, A. F., Duque, E. A., & Chica, S. (2013). Solar heater ecologic automated based in PET bottles, 18(c), 145–165.

Martínez, G. A. L., López, J. A. M., & Suarez, B. H. P. (2012). Evaluación de un calentador solar de agua fabricado con tubería PVC en serie y envases PET translucidos. Revista Tecnura, 16(0), 120–128.

Miranda Gassull, M. (2011). Sistema de calentamiento de agua sanitaria solar. Universidad Internacional de Andalucía.

Morillón, D. (2011). Edificación Sustentable En México : Retos Y Oportunidades. Ai México, 1–41.

Naemura, A. (2005). Water heater. China.

Oshima, T. (2008). Vessel used in solar water heater. China.

Reyes, D. F., & Merchán, Y. A. (2014). Estado Del Arte De La Construccion Con Material Reciclable, 1–99. Retrieved from http://repository.ucatolica.edu.co/bitstream/10983/2025/1/Construcción-con-material-reciclable.pdf

Sedano, C., Guadalajara, U. De, Luna, A., Sedano, J., & Morán, J. (2011). Diseño y evaluación de un colector solar con parámetros de insolación para la Costa Sur de Jalisco , México, 1–7.

Shao, B., Han, H., Hu, J., Zhao, J., Wu, G., Xue, Y., … Zhang, S. (2005). Determination of alkylphenol and bisphenol a in beverages using liquid chromatography/electrospray ionization tandem mass spectrometry. Analytica Chimica Acta, 530(2), 245–252. https://doi.org/10.1016/j.aca.2004.09.086

Vazhnov, A. (2013). Impresión 3D, como va a cambiar el mundo. Buenos aires, Argentina.

Vincent, P. (1981). El cuerpo humano. Anatomía, fisiología, biología, higiene. (Reverte, Ed.) (Primera). Barcelona.