Vol. 32 (2022)
Artículos de Investigación

Short-term amendment of biosolid on agricultural soil: effects on C and N mineralization and microbial activity

Miriam del Rocío Medina-Herrera
Tecnológico Nacinal de México en Celaya
Bio
María de la Luz Xochilt Negrete-Rodríguez
Tecnológico Nacional de México en Celaya
Bio
Manuel Alberto Prieto-Rojas
Universidad Tecnológica de Salamanca
Bio
Héctor Iván Bedolla-Rivera
Tecnológico Nacional de Mexico
Eloy Conde Barajas
Tecnológico Nacional de México en Celaya
Bio

Published 2022-06-15

Keywords

  • Urease activity,
  • microbial biomass,
  • CO2 emissions,
  • nitrogen available

How to Cite

Medina-Herrera, M. del R., Negrete-Rodríguez, M. de la L. X., Prieto-Rojas, M. A., Bedolla-Rivera, H. I. ., & Barajas, E. C. (2022). Short-term amendment of biosolid on agricultural soil: effects on C and N mineralization and microbial activity. Acta Universitaria, 32, 1–16. https://doi.org/10.15174/au.2022.2433

Abstract

Adding biosolids to agricultural soils can improve its quality through increased storage of C and N. A study to analyze the short-term impact of the addition of biosolids on the release of nutrients and the microbial activity in agricultural soil was carried out. The microbial biomass C (MB-C), urease activity (UA), and mineralization of N and C at different application rates of biosolids were evaluated (0 mg, 100mg and 200 mg of N-NH4+ kg-1). In addition, a biosolid-only treatment was tested. It was observed an increase in C and N mineralization, NH3 volatilization, and MB-C content, according to the application rate of biosolids. In biosolid treatments, UA increased 100% on average in the first seven days of incubation. These results suggest that the nutrient content in the soil is improved and microbial activity is positively stimulated.

References

  1. Adetunji, A. T., Lewu, F. B., Mulidzi, R., & Ncube, B. (2017). The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review. Journal of soil science and plant nutrition, 17(3), 794-807. doi: 10.4067/S0718-95162017000300018
  2. Alef K, Nanniperi P, 1995. Soil sampling, handling, storage and analysis. In: Methods in Applied Soil Microbiology and Biochemistry; Forter JC (ed.). pp. 60 – 61. Academic Press. London, England.
  3. Alvarenga, P., Farto, M., Mourinha, C., & Palma, P. (2016). Beneficial use of dewatered and composted sewage sludge as soil amendments: behaviour of metals in soils and their uptake by plants. Waste and Biomass Valorization, 7(5), 1189-1201. doi: 10.1007/s12649-016-9519-z
  4. Anderson, J. P. E., & Domsch, K. H. (1978). A physiological method for the quantitative measurement of microbial biomass in soils. Soil biology and biochemistry, 10(3), 215-221. doi: 10.1016/0038-0717(78)90099-8
  5. Andreoli CV, Ferreira AC, Cherubini C, Rodrigues C, Carneiro C, Fernandes F, 2001. Capítulo 4 Higienização do lodo de esgoto. In: Resíduos sólidos do saneamento; processamento, reciclagem e disposição final. pp. 282. Abes y Prosab. Brasil.
  6. Araújo, A. S. F., Lima, L. M., Santos, V. M., & Schmidt, R. (2016). Repeated application of composted tannery sludge affects differently soil microbial biomass, enzymes activity, and ammonia-oxidizing organisms. Environmental Science and Pollution Research, 23(19), 19193-19200. doi: 10.1007/s11356-016-7115-1
  7. Azeem, M., Hayat, R., Hussain, Q., Ahmed, M., Imran, M., & Crowley, D. E. (2016). Effect of biochar amendment on soil microbial biomass, abundance and enzyme activity in the mash bean field. Journal of Biodiversity and Environmental Sciences, 8, 2222-3045.
  8. Behera, S. N., Sharma, M., Aneja, V. P., & Balasubramanian, R. (2013). Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research, 20(11), 8092-8131. doi: 10.1007/s11356-013-2051-9
  9. Beltrán-Hernández, R. I., Luna-Guido, M. L., & Dendooven, L. (2007). Emission of carbon dioxide and dynamics of inorganic N in a gradient of alkaline saline soils of the former lake Texcoco. Applied soil ecology, 35(2), 390-403. doi: 10.1016/j.apsoil.2006.07.005
  10. Bremner JM, 1996. Nitrogen—total. In: Methods of Soil Analysis: Chemical Methods Part 3; Sparks DL (ed.). pp.: 1085-1121. Soil Science Society of America: Madison, WI, USA.
  11. Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., ... & Zoppini, A. (2013). Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry, 58, 216-234. doi: 10.1016/j.soilbio.2012.11.009
  12. Celis, J. E., Sandoval, M., Martínez, B., & Quezada, C. (2013). Effect of organic and mineral amendments upon soil respiration and microbial biomass in a saline-sodic soil. Ciencia e investigación Agraria, 40(3), 571-580. doi: 10.7764/rcia.v40i3.1167
  13. Celis, J. H., Machuca, A. H., Sandoval, M. E., & Morales, P. C. (2011). Biological activity in a degraded alfisol amended with sewage sludge and cropped with yellow serradela (Ornithopus compressus L.). Chilean Journal of Agricultural Research, 71(1), 164. doi: 10.4067/S0718-58392011000100020
  14. Chen, H., Li, D., Zhao, J., Xiao, K., & Wang, K. (2018). Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes: A meta-analysis. Agriculture, Ecosystems & Environment, 252, 126-131. doi: 10.1016/j.agee.2017.09.032
  15. Clarke, R. M., & Cummins, E. (2015). Evaluation of “classic” and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Human and Ecological Risk Assessment: An International Journal, 21(2), 492-513. doi: 10.1080/10807039.2014.930295
  16. Curtin, D., Beare, M. H., Scott, C. L., Hernandez-Ramirez, G., & Meenken, E. D. (2014). Mineralization of soil carbon and nitrogen following physical disturbance: a laboratory assessment. Soil Science Society of America Journal, 78(3), 925-935. doi: 10.2136/sssaj2013.12.0510
  17. de Melo, W. J., de Melo, G. M., de Melo, V. P., Donha, R. M., & Delarica, D. D. L. D. (2018). Nitrogen Dynamic in Agricultural Soils Amended With Sewage Sludge. In Soil Management and Climate Change (pp. 189-205). doi: 10.1016/B978-0-12-812128-3.00013-6
  18. Diacono, M., & Montemurro, F. (2011). Long-term effects of organic amendments on soil fertility. Sustainable Agriculture Volume 2 (pp. 761-786). Springer, Dordrecht. doi: 10.1007/978-94-007-0394-0_34
  19. Fernández-Luqueño, F., Cabrera-Lázaro, G., Corlay-Chee, L., López-Valdez, F., & Dendooven, L. (2017). Dissipation of Phenanthrene and Anthracene from Soil with Increasing Salt Content Amended with Wastewater Sludge. Polish Journal of Environmental Studies, 26(1). doi: 10.15244/pjoes/64929
  20. Fernández-Luqueño, F., Mendoza-Cristino, R., & Dendooven, L. (2016). Do Application Rates of Wastewater Sewage Sludge Affect the Removal of PAHs from Alkaline Saline Soil?. Polish Journal of Environmental Studies, 25(6). doi: 10.15244/pjoes/63852
  21. Gee G.W. y Bauder J.W. (1986). Particle size analysis In: Methods of Soil Analysis: Part 1 – Physical and Mineralogical Methods, (A. Klute, Ed.), Soil Science Society of America, Madison, WI, USA, pp. 383–411. doi: 10.2136/sssabookser5.1.2ed.c15
  22. Guerra, P. J., Luna, M. L., & Hernández, R. B. (2004). Aprovechamiento de biosólidos como abonos orgánicos en pastizales áridos y semiáridos. Revista Mexicana de Ciencias Pecuarias, 42(3), 379-395.
  23. Gutiérrez–Avedoy VJ, Ramírez–Hernández IF, Encarnación–Aguilar G, Medina–Arévalo A, 2012. Diagnóstico básico para la gestión integral de los residuos. Instituto Nacional de Ecología y Cambio Climático (INECC) y Centro Nacional de Investigación y Capacitación Ambiental. México. p. 21
  24. Harrison-Kirk, T., Beare, M. H., Meenken, E. D., & Condron, L. M. (2014). Soil organic matter and texture affect responses to dry/wet cycles: Changes in soil organic matter fractions and relationships with C and N mineralisation. Soil Biology and Biochemistry, 74, 50-60. doi: 10.1016/j.soilbio.2014.02.021
  25. Heil, J., Vereecken, H., & Brüggemann, N. (2016). A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. European Journal of Soil Science, 67(1), 23-39. doi: 10.1111/ejss.12306
  26. Jin, V. L., Johnson, M. V. V., Haney, R. L., & Arnold, J. G. (2011). Potential carbon and nitrogen mineralization in soils from a perennial forage production system amended with class B biosolids. Agriculture, ecosystems & environment, 141(3-4), 461-465. doi: 10.1016/j.agee.2011.03.016
  27. Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and fertility of Soils, 6(1), 68-72. doi: 10.1007/BF00257924
  28. Keeney DR, Nelson DW, 1982. Nitrogen—Inorganic Forms. In: Methods of soil analysis. Part 2. Chemical and microbiological properties; Page AL, Miller RH, Keeney DR (eds.). pp. 643-698. Agronomy, Madison, WI, USA.
  29. Lloret, E., Pascual, J. A., Brodie, E. L., Bouskill, N. J., Insam, H., Juárez, M. F. D., & Goberna, M. (2016). Sewage sludge addition modifies soil microbial communities and plant performance depending on the sludge stabilization process. Applied soil ecology, 101, 37-46. doi: 10.1016/j.apsoil.2016.01.002
  30. López-Valdez, F., Fernández-Luqueño, F., Luna-Guido, M. L., Marsch, R., Olalde-Portugal, V., & Dendooven, L. (2010). Microorganisms in sewage sludge added to an extreme alkaline saline soil affect carbon and nitrogen dynamics. Applied soil ecology, 45(3), 225-231. doi: 10.1016/j.apsoil.2010.04.009
  31. Nannipieri, P., Pedrazzini, F., Arcara, P. G., & Piovanelli, C. (1979). Changes in amino acids, enzyme activities, and biomasses during soil microbial growth. Soil Science, 127(1), 26-34. doi: 10.1097/00010694-197901000-00004
  32. Núñez Ramos, P. A., Jara Castillo, A. A., Sandoval Sandoval, Y., Demanet, R., & Mora, M. D. L. L. (2012). Biomasa microbiana y actividad ureasa del suelo en una pradera permanente pastoreada de Chile. Ciencia del suelo, 30(2), 187-199.
  33. Pajares, S., & Bohannan, B. J. (2016). Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Frontiers in microbiology, 7, 1045. doi: 10.3389/fmicb.2016.01045
  34. Peng, X., Maharjan, B., Yu, C., Su, A., Jin, V., & Ferguson, R. B. (2015). A laboratory evaluation of ammonia volatilization and nitrate leaching following nitrogen fertilizer application on a coarse-textured soil. Agronomy Journal, 107(3), 871-879. doi: 10.2134/agronj14.0537
  35. Redmile-Gordon, M. A., Evershed, R. P., Hirsch, P. R., White, R. P., & Goulding, K. W. T. (2015). Soil organic matter and the extracellular microbial matrix show contrasting responses to C and N availability. Soil Biology and Biochemistry, 88, 257-267. doi: 10.1016/j.soilbio.2015.05.025
  36. Rhoades, J.D. (1996). Salinity: electrical conductivity and total dissolved salts. In: Methods of Soil Analysis, Part 3 – Chemical Methods (D.L. Sparks, Ed.). Soil Science Society of America, Madison, WI, USA, pp. 417–435. doi: 10.2136/sssabookser5.3.c14
  37. Rigby, H., & Smith, S. R. (2014). The nitrogen fertiliser value and other agronomic benefits of industrial biowastes. Nutrient cycling in agroecosystems, 98(2), 137-154. doi: 10.1007/s10705-014-9602-4
  38. Rigby, H., Clarke, B. O., Pritchard, D. L., Meehan, B., Beshah, F., Smith, S. R., & Porter, N. A. (2016). A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Science of the Total Environment, 541, 1310-1338. doi: 10.1016/j.scitotenv.2015.08.089
  39. Roig, N., Sierra, J., Martí, E., Nadal, M., Schuhmacher, M., & Domingo, J. L. (2012). Long-term amendment of Spanish soils with sewage sludge: effects on soil functioning. Agriculture, ecosystems & environment, 158, 41-48. doi: 10.1016/j.agee.2012.05.016
  40. Rojas-Oropeza, M., Dendooven, L., Garza-Avendano, L., Souza, V., Philippot, L., & Cabirol, N. (2010). Effects of biosolids application on nitrogen dynamics and microbial structure in a saline–sodic soil of the former Lake Texcoco (Mexico). Bioresource technology, 101(7), 2491-2498. doi: 10.1016/j.biortech.2009.10.088
  41. Sciubba, L., Cavani, L., Marzadori, C., & Ciavatta, C. (2013). Effect of biosolids from municipal sewage sludge composted with rice husk on soil functionality. Biology and fertility of soils, 49(5), 597-608. doi: 10.1007/s00374-012-0748-4
  42. Sciubba, L., Cavani, L., Negroni, A., Zanaroli, G., Fava, F., Ciavatta, C., & Marzadori, C. (2014). Changes in the functional properties of a sandy loam soil amended with biosolids at different application rates. Geoderma, 221, 40-49. doi: 10.1016/j.geoderma.2014.01.018
  43. SEMARNAT, 2002. Norma Oficial Mexicana (NOM–004–SEMARNAT–2002). Protección ambiental. Lodos y biosólidos. Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final. Secretaría del Medio Ambiente y Recursos Naturales, Diario Oficial de la Federación, México.
  44. SEMARNAT, 2014. Programa Estatal para la Prevención y Gestión Integral de Residuos del estado de Guanajuato. Universidad Nacional Autónoma de México. México. 53-54 p.
  45. Sharma, B., Sarkar, A., Singh, P., & Singh, R. P. (2017). Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Management, 64, 117-132. doi: 10.1016/j.wasman.2017.03.002
  46. Singh, R. P., Sarkar, A., Sengupta, C., Singh, P., Miranda, A. R. L., Nunes, L. A. P. L., ... & de Melo, W. J. (2015). Effect of utilization of organic waste as agricultural amendment on soil microbial biomass. Annual Research & Review in Biology, 7(3).
  47. Tabatabai, M. A. (1994). Soil enzymes. In ‘Methods of soil analysis. Part 2: Microbiological and biochemical properties’.(Eds RW Weaver.) pp. 775–833. Soil Science Society of America: Madison, WI, USA.
  48. Thomas G.W. (1996). Soil pH and soil acidity. In: Methods of Soil Analysis, Part 3 – Chemical Methods (D.L. Sparks, Ed.). Soil Science Society of America, Madison, WI, USA, pp. 475–490. DOI: 10.2136/sssabookser5.3.c16
  49. Víctor-Tamaríz, J., Castelán-Vega, R., & Cruz-Montalvo, A. (2015). Effect of biosolids on the physicochemical properties of an inceptisol of the municipality of puebla, mexico. Revista AIDIS de Ingeniería y Ciencias Ambientales: investigación, desarrollo y práctica, 8(3), 248-256.
  50. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. doi: 10.1097/00010694-193401000-00003
  51. Xue, J., Kimberley, M. O., Ross, C., Gielen, G., Tremblay, L. A., Champeau, O., ... & Wang, H. (2015). Ecological impacts of long-term application of biosolids to a radiata pine plantation. Science of the Total Environment, 530, 233-240. doi: 10.1016/j.scitotenv.2015.05.096