Índices para el monitoreo de cuerpos de agua usando sensores remotos
PDF
XML

Cómo citar

Hernández Lozano, R., & Pavón, N. (2024). Índices para el monitoreo de cuerpos de agua usando sensores remotos. Acta Universitaria, 34, 1–19. https://doi.org/10.15174/au.2024.3814

Resumen

La sobreexplotación de los cuerpos de agua aunado a las sequías y el impacto del cambio climático reducen el agua disponible para actividades humanas, lo cual genera serios problemas económicos y sociales. Por tanto, una tarea imprescindible es el monitoreo del estado de los cuerpos de agua superficiales, y una alternativa rápida, precisa y económica es hacerlo mediante técnicas de teledetección usando sensores remotos satelitales. Estas técnicas ayudan a obtener información a distancia de un determinado objeto situado sobre la superficie terrestre. El objetivo de este estudio fue, mediante el método PRISMA, realizar una revisión de las aplicaciones de los sensores remotos en el monitoreo de cuerpos de agua para dar alternativas de uso de los índices de agua. El índice de agua modificado de diferencia normalizada (MNDWI, por sus siglas en inglés) y el índice de extracción de agua automatizado (AWEI, por sus siglas en inglés) son los más adecuados debido a que son fáciles de construir e interpretar, además de que tienen alta precisión.

https://doi.org/10.15174/au.2024.3814
PDF
XML

Citas

Abbaspour, M., Javid, A. H., Mirbagheri, S. A., Ahmadi Givi, F., & Moghimi, P. (2012). Investigation of lake drying attributed to climate change. International Journal of Environmental Science and Technology, 9, 257-266. https://doi.org/10.1007/s13762-012-0031-0

Ali, D. A., Deininger, K., & Monchuk, D. (2020). Using satellite imagery to assess impacts of soil and water conservation measures: evidence from Ethiopia’s Tana-Beles watershed. Ecological Economics, 169, 106512. https://doi.org/10.1016/j.ecolecon.2019.106512

Ariza, A., Roa, O. J., Serrato, P. K., & León, H. A. (2018). Uso de índices espectrales derivados de sensores remotos para la caracterización geomorfológica en zonas insulares del Caribe colombiano. Perspectiva Geográfica, 23, 105-122. https://doi.org/10.19053/01233769.5863

Arreola-Esquivel, M., Delgadillo-Herrera, M., Toxqui-Quitl, C., & Padilla-Vivanco, A. (2019). Index-based methods for water body extraction in satellite data. Proceedings of Spie, 111372N. https://doi.org/10.1117/12.2529756

Asfaw, W., Haile, A. T., & Rientjes, T. (2020). Combining multisource satellite data to estimate storage variation of a lake in the Rift Valley Basin, Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 89, 102095. https://doi.org/10.1016/j.jag.2020.102095

Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: a case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/j.wace.2017.12.002

Bangira, T., Alfieri, S. M., Menenti, M., & van Niekerk, A. (2019). Comparing thresholding with machine learning classifiers for mapping complex water. Remote Sensing, 11(11), 1351. https://doi.org/10.3390/rs11111351

Benefoh, D. T., Villamor, G. B., van Noordwijk, M., Borgemeister, C., Asante, W. A., & Asubonteng, K. O. (2018). Assessing land-use typologies and change intensities in a structurally complex Ghanaian cocoa landscape. Applied Geography, 99, 109–119. https://doi.org/10.1016/j.apgeog.2018.07.027

Bhaga, T. D., Dube, T., Shekede, M. D., & Shoko, C. (2020). Impacts of climate variability and drought on surface water resources in sub-Saharan Africa using remote sensing: a review. Remote Sensing, 12(24), 4184. https://doi.org/10.3390/rs12244184

Caballero, M., & Vázquez, G. (2019). Lagos como sensores de cambio climático: el caso de La Alberca de Tacámbaro, Michoacán, México. TIP Revista Especializada en Ciencias Químico-Biológicas, 22, 1-8. https://doi.org/10.22201/fesz.23958723e.2019.0.193

Calvario, G., Hernández, C., Lazkano, E., Sierra, B., Dalmau, O., & Alarcón, T. (2017). Machine learning approach to fuse multiple band for water bodies detection. 3rd International Conference on Computer Science Networks and Information Technology, August 26-27, Montreal, Canada. https://www.researchgate.net/profile/Gabriela-Calvario-2/publication/321151332_MACHINE_LEARNING_APPROACH_TO_FUSE_MULTIPLE_BAND_FOR_WATER_BODIES_DETECTION/links/5a11d120a6fdccc2d79b64db/MACHINE-LEARNING-APPROACH-TO-FUSE-MULTIPLE-BAND-FOR-WATER-BODIES-DETECTION.pdf

Calvario, G., Dalmau, O., Alarcón, T. E., Sierra, B., & Hernández, C. (2018). Selection and fusion of spectral indices to improve water body discrimination. IEEE Access, 6, 72952-72961. https://doi.org/10.1109/ACCESS.2018.2881430

Castilla, J. L. (2016). IPICIM: Módulo clasificador de imágenes ópticas multiespectrales aplicado al área de geociencias [Tesis de posgrado]. Instituto Potosino de Investigación Científica y Tecnológica, A. C. https://ipicyt.repositorioinstitucional.mx/jspui/bitstream/1010/459/3/TMIPICYTC3I62016.pdf

Castillo, M. D. (2003). Morfometría de lagos. Una aplicación a los lagos del Pirineo. Universitat de Barcelona.

Castro-Lazcarro, M., Davydova-Belitskaya, V., & Cárdenas-Tristán, A. (2021). Assessment of climate indices and NDWI analysis in Lerma Chapala basin. Preprints, 2021020067. https://doi.org/10.20944/preprints202102.0067.v1

Chapala, L., Pátzcuaro, L., Cuitzeo, L., & López-Caloca, A. A. (2015). Inpainting restoration for inland waters Mexico ecosystems. 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), Annecy, France. https://doi.org/10.1109/Multi-Temp.2015.7245782

Colditz, R. R., Souza, C. T., Vazquez, B., Wickel, A. J., & Ressl, R. (2018). Analysis of optimal thresholds for identification of open water using MODIS-derived spectral indices for two coastal wetland systems in Mexico. International Journal of Applied Earth Observation and Geoinformation, 70, 13-24. https://doi.org/10.1016/j.jag.2018.03.008

Comisión Nacional del Agua (Conagua). (2018). Estadísticas del agua en México 2018.Conagua. https://files.conagua.gob.mx/conagua/publicaciones/publicaciones/eam2018.pdf

Comisión Nacional del Agua (Conagua). (2019). Más de 66 por ciento de México con algún grado de sequía. https://www.gob.mx/conagua/prensa/mas-de-66-por-ciento-de-mexico-con-algun-grado-de-sequia

Danladi, I. B., Gül, M., & Ateş, E. (2020). Response of the barrier island coastal region of southwestern Nigeria to climate and non-climate forcing. African Journal of Marine Science, 42(1), 43–51. https://doi.org/10.2989/1814232X.2020.1727953

Dávila, J., Díaz, R. E., Navarro, L. A., & Romeo, E. (2018). Las presas de jales en el noroeste del estado de Sonora: una aproximación geográfica mediante percepción remota. Investigaciones Geográficas, (97), 1-18. https://doi.org/10.14350/rig.59624

Del-Toro-Guerrero, F. J., Daesslé, L. W., Méndez-Alonzo, R., & Kretzschmar, T. (2022). Surface reflectance–derived spectral indices for drought detection: application to the Guadalupe Valley basin, Baja California, Mexico. Land, 11(6), 783. https://doi.org/10.3390/land11060783

El-Asmar, H. M., Hereher, M. E., & El-Kafrawy, S. B. (2013). Surface area change detection of the Burullus Lagoon, North of the Nile Delta, Egypt, using water indices: a remote sensing approach. Egyptian Journal of Remote Sensing and Space Science, 16(1), 119-123. https://doi.org/10.1016/j.ejrs.2013.04.004

Escobar-Flores, J. G., Torres, J., Valdez, R., Álvarez, S., Galina, P., & Sandoval, S. (2017). Detection of waterholes by Vegetation Index in the habitat of bighorn sheep (Ovis Canadensis) in Baja California. PeerJ Preprints, 5, e2999v1. https://doi.org/10.7287/peerj.preprints.2999v1

Escobar-Flores, J. G., Sandoval, S., Valdez, R., Shahriary, E., Torres, J., Alvarez-Cardenas, S., & Gallina-Tessaro, P. (2019). Waterhole detection using a vegetation index in desert bighorn sheep (Ovis canadensis cremnobates) habitat. PLoS One, 14(1), e0211202. https://doi.org/10.1371/journal.pone.0211202

Fernández, J. D., Gallegos, C. A., Padilla, J. A., Barranco, A. I., Vázquez, J. A., & Correa, P. J. (2021). Detección automática de cuerpos de agua del bajío utilizando parámetros morfométricos obtenidos de imágenes satelitales y procesados con redes neuronales. Pistas Educativas, 43(140), 90-104. https://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/2599/2032

Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029

Fujihara, Y., Tanakamaru, H., Tada, A., Ahmed, B. M., & Eltaib, K. A. (2020). Analysis of cropping patterns in Sudan’s Gash Spate Irrigation System using Landsat 8 images. Journal of Arid Environments, 173, 104044. https://doi.org/10.1016/j.jaridenv.2019.104044

Gómez-Palacios, D., Torres, M. A., & Reinoso, E. (2017). Flood mapping through principal component analysis of multitemporal satellite imagery considering the alteration of water spectral properties due to turbidity conditions. Geomatics, Natural Hazards and Risk, 8(2), 607-623. https://doi.org/10.1080/19475705.2016.1250115

Herndon, K., Muench, R., Cherrington, E., & Griffin, R. (2020). An assessment of surface water detection methods for water resource management in the Nigerien Sahel. Sensors, 20(2), 431. https://doi.org/10.3390/s20020431

Intergovernmental Panel on Climate Change (IPCC). (2023). Summary for Policymakers. En H. Lee & J. Romero (eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-34). IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647.001

Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Noges, T., Noges, P., Attayde, J. L., Zohary, T., Coppens, J., Bucak, T., Fernandes, R., Sousa, F. R., Kernan, M., Søndergaard, M., & Beklioğlu, M. (2015). Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 750, 201-227. https://doi.org/10.1007/s10750-014-2169-x

Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J., & Xiao, T. (2014). An automated method for extracting rivers and lakes from landsat imagery. Remote Sensing, 6(6), 5067-5089. https://doi.org/10.3390/rs6065067

Jin, C., Xiao, X., Merbold, L., Arneth, A., Veenendaal, E., & Kutsch, W. L. (2013). Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa. Remote Sensing of Environment, 135, 189–201. https://doi.org/10.1016/j.rse.2013.03.033

Kasampalis, D. A., Alexandridis, T. K., Deva, C., Challinor, A., Moshou, D., & Zalidis, G. (2018). Contribution of remote sensing on crop models: a review. Journal of Imaging, 4(4), 52. https://doi.org/10.3390/jimaging4040052

Krinner, G., & Boike, J. (2010). A study of the large-scale climatic effects of a possible disappearance of high-latitude inland water surfaces during the 21st century. Boreal Environment Research, 15, 203-217. https://epic.awi.de/id/eprint/20281/

Landa, R., Magaña, V., & Neri, C. (2008). Agua y clima: elementos para la adaptación al cambio climático. Semarnat. https://www.atmosfera.unam.mx/wp-content/uploads/2017/12/agua-y-clima.pdf

Leal, O. A., Gómez, M. A., Saldaña, M. P., & de la Maza, M. (2019). Tendencias de cambio en los humedales de Cuatro Ciénegas, Coahuila, México. Alter, 20, 57-77. https://static1.squarespace.com/static/552c00efe4b0cdec4ea42d9f/t/5f1a030c0bfb640dc274b3bc/1595540239064/5-ALTER20-tendencias2.pdf

Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., & Zhang, X. (2013). A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing, 5(11), 5530–5549. https://doi.org/10.3390/rs5115530

López, P. A., López, E., Martínez, J. A., & Puebla, J. H. (2019). Water bodies detection using supervised learning algorithms. IEEE International Fall Meeting on Communications and Computing (ROC&C), Acapulco, México.https://doi.org/10.1109/ROCC.2019.8873535

Luna, J. D. (2017). Las presas de jales en la zona Noroeste del Estado de Sonora: una aproximación geográfica mediante Percepción Remota. El Colegio de Sonora. https://biblioteca.colson.edu.mx/e-docs/RED/RED001132.pdf

Magaña, V. O., & Neri, C. (2012). Cambio climático y sequías en México. Ciencia-Academia Mexicana de Ciencias, 63(4), 26-35.

https://biblat.unam.mx/es/revista/ciencia-academia-mexicana-de-ciencias/articulo/cambio-climatico-y-sequias-en-mexico

Malahlela, O. E. (2016). Inland waterbody mapping: towards improving discrimination and extraction of inland surface water features. International Journal of Remote Sensing, 37(19), 4574–4589. https://doi.org/10.1080/01431161.2016.1217441

Maldonado, D. (2022). Investigating changes in Mangrove cover and conservation policy in the protected area of Yum Balam, Mexico, 1981-2020. Carleton University. https://repository.library.carleton.ca/concern/etds/j9602172k

Martínez, P. F., Díaz-Delgado, C., & Moeller-Chavez, G. (2019). Seguridad hídrica en México: diagnóstico general y desafíos principales. Ingeniería del Agua, 23(2), 107-121. https://doi.org/10.4995/ia.2019.10502

Masocha, M., Dube, T., Makore, M., Shekede, M. D., & Funani, J. (2018). Surface water bodies mapping in Zimbabwe using landsat 8 OLI multispectral imagery: a comparison of multiple water indices. Physics and Chemistry of the Earth, Parts A/B/C, 106, 63–67. https://doi.org/10.1016/j.pce.2018.05.005

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714

Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. https://doi.org/10.1126/sciadv.1500323

Menarguez, M. A. (2015). Global water body mapping from 1984 to 2015 using global high resolution multispectral satellite imagery. University of Oklahoma.

Mozafari, M., Hosseini, Z., Fijani, E., Eskandari, R., Siahpoush, S., & Ghader, F. (2022). Effects of climate change and human activity on lake drying in Bakhtegan Basin, southwest Iran. Sustainable Water Resources Management, 8(109). https://doi.org/10.1007/s40899-022-00707-z

Mullen, C., & Muller, M. F. (2020). Assessing historic water extents in rapidly changing lakes: a hybrid remote sensing classification approach. Hydrology and Earth System Sciences Discussions, 1-17. https://doi.org/10.5194/hess-2020-198

Murray, H., & Khaki, M. (2021). Analysis of Surface Water Areal changes using Remote Sensing Data. Advances in Environmental and Engineering Research, 2(3), 019. https://doi.org/10.21926/aeer.210301z

Nadeem, A. A., Zha, Y., Shi, L., Ali, S., Wang, X., Zafar, Z., Afzal, Z., & Tariq, M. A. U. R. (2023). Spatial downscaling and gap-filling of SMAP soil moisture to high resolution using MODIS surface variables and machine learning approaches over ShanDian river basin, China. Remote Sensing, 15(3), 812. https://doi.org/10.3390/rs15030812

Ndehedehe, C. E., Ferreira, V. G., Onojeghuo, A. O., Agutu, N. O., Emengini, E., & Getirana, A. (2020). Influence of global climate on freshwater changes in Africa’s largest endorheic basin using multi-scaled indicators. Science of the Total Environment, 737, 139643. https://doi.org/10.1016/j.scitotenv.2020.139643

Noyola-Medrano, C., & Martínez-Sías, V. A. (2017). Assessing the progress of desertification of the southern edge of Chihuahuan Desert: a case study of San Luis Potosi Plateau. Journal of Geographical Sciences, 27(4), 420-438. https://doi.org/10.1007/s11442-017-1385-5

Orimoloye, I. R., Ololade, O. O., Mazinyo, S. P., Kalumba, A. M., Ekundayo, O. Y., Busayo, E. T., Akinsanola, A. A., & Nel, W. (2019). Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon, 5(7), e02148. https://doi.org/10.1016/j.heliyon.2019.e02148

Ortega, D., Cruz, J. D. L., & Castellano, H. (2018). Peligro, vulnerabilidad y riesgo por sequía en el contexto del cambio climático en México. Instituto Mexicano de Tecnología del Agua (IMTA).

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., Moher, D., Yepes-Nuñez, J. J., Urrútia, G., Romero-García, M., & Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016

Pech, F., Sánchez, J. V., & Sánchez, H. (2020). Análisis de zonas de cultivo y cuerpos de agua mediante el cálculo de índices radiométricos con imágenes Sentinel-2. Lámpsakos, (24), 48-59. https://doi.org/10.21501/21454086.3601

Pricope, N. G., Mapes, K. L., & Woodward, K. D. (2019). Remote sensing of human-environment interactions in global change research: a review of advances, challenges and future directions. Remote Sensing, 11(23), 2783. https://doi.org/10.3390/rs11232783

Rico, E., Chicote, A., González, M. E., & Montes, C. (1995). Batimetría y análisis morfométrico del lago de Arreo (N. España). Limnetica, 11(1), 55-58. https://repositorio.uam.es/bitstream/handle/10486/13666/64234_L11a055_Batimetria_lago_Arreo.pdf?sequence=1

Rojas-Villalobos, H. L. (2019). A water informatics approach to exploring the hydrological systems of basins with limited information; the case of the Bustillos Lagoon, Chihuahua, Mexico [Tesis doctoral]. New Mexico State University. https://zenodo.org/records/4302787

Rojas-Villalobos, H., Samani, Z., Brown, C., Alatorre-Cejudo, L., Stringam, B., & Salas-Aguilar, V. (2022). Comparación de estimaciones de modelos de evaporación REEM y EEFlux en cuerpos de agua someros. Caso: laguna de Bustillos, Chihuahua, México. Tecnología y Ciencias del Agua, 13(6), 209-248. https://doi.org/10.24850/j-tyca-13-06-05

Romero, F. S. (2006). La teledetección satelital y los sistemas de protección ambiental. Revista AquaTIC, 24, 13-41. http://revistaaquatic.com/ojs/index.php/aquatic/article/view/212

Saiz-Rodríguez, J. A. (2020). Evaluación de inundaciones e islas de calor urbano para la planificación de espacios verdes urbanos mediante teledetección, caso de estudio: Mexicali, Baja California [Tesis Doctoral]. Universidad Autónoma de Baja California. https://repositorioinstitucional.uabc.mx/entities/publication/78d9e234-bda6-4a00-89d6-5f543854e1ca

Sánchez, J. V., Pech-May, F., Sánchez, H. G., & Magaña-Govea, J. (2021). Mapeo de inundaciones utilizando imágenes satelitales SAR en Google Earth Engine. Research in Computing Science, 150(4), 83-95. https://rcs.cic.ipn.mx/2021_150_4/Mapeo%20de%20inundaciones%20utilizando%20imagenes%20satelitales%20SAR%20en%20Google%20Earth%20Engine.pdf

Sánchez, G. C., Dalmau, O., Alarcón, T. E., Sierra, B., & Hernández, C. (2018). Selection and fusion of spectral indices to improve water body discrimination. IEEE Access, 6, 72952-72961. https://doi.org/10.1109/ACCESS.2018.2881430

Sandoval, S., & Escobar-Flores, J. G. (2020). Changes in water surface area during the past 30 years in a ramsar wetland in Durango, Mexico using landsat data. IEEE International Geoscience and Remote Sensing Symposium, 5093-5095. https://doi.org/10.1109/IGARSS39084.2020.9323537

Sandoval, S., Escobar-Flores, J. G., & Sánchez-Ortíz, E. (2020). Inventario de cuerpos de agua de la Sierra Madre Occidental (México) usando SIG y percepción remota. Investigaciones Geográficas, (102). https://doi.org/10.14350/rig.59975

Sedeño-Díaz, J. E., & López-López, E. (2021). The influence of climate change on river corridors in drylands: the case of the Tehuacán-Cuicatlán biosphere reserve. Frontiers in Environmental Science, 9, 681703. https://doi.org/10.3389/fenvs.2021.681703

Slagter, B., Tsendbazar, N. E., Vollrath, A., & Reiche, J. (2020). Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: a case study in the St. Lucia wetlands, South Africa. International Journal of Applied Earth Observation and Geoinformation, 86, 102009. https://doi.org/10.1016/j.jag.2019.102009

Soria-Ruiz, J., Fernández-Ordoñez, Y. M., Ambrosio-Ambrosio, J. P., Escalona-Maurice, M. J., Medina-García, G., Sotelo-Ruiz, E. D., & Ramirez-Guzman, M. E. (2022). Flooded extent and depth analysis using optical and SAR remote sensing with machine learning algorithms. Atmosphere, 13(11), 1852. https://doi.org/10.3390/atmos13111852

Tapia-Silva, F. O., & López-Caloca, A. A. (2018). Calculating long-term changes in Lake Chapala’s area and water volume using remote sensing and field data. Journal of Applied Remote Sensing, 12(4), 042805. https://doi.org/10.1117/1.JRS.12.042805

Tassew, B. G., Belete, M. A., & Miegel, K. (2021). Assessment and analysis of morphometric characteristics of Lake Tana sub-basin, Upper Blue Nile Basin, Ethiopia. International Journal of River Basin Management, 21(2), 1-15. https://doi.org/10.1080/15715124.2021.1938091

Tulbure, M. G., Broich, M., Stehman, S. V., & Kommareddy, A. (2016). Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sensing of Environment, 178, 142-157. https://doi.org/10.1016/j.rse.2016.02.034

Tottrup, C., Druce, D., Meyer, R. P., Christensen, M., Riffler, M., Dulleck, B., Rastner, P., Jupova K., Sokoup, T., Haag, A., Cordeiro, M. C. R., Martinez, J. M., Franke, J., Schwarz, M., Vanthof, V., Liu, S., Zhou, H., Marzi, D., Rudiyanto, R., Thompson, M., Hiestermann, J., Alemohammad, H., Masse, A., Sannier, C., Wangchuk, S., Schumann, G., Giustarini, L., Hallowes, J., Markert K., & Paganini, M. (2022). Surface water dynamics from space: a round robin intercomparison of using optical and SAR high-resolution satellite observations for regional surface water detection. Remote Sensing, 14(10), 2410. https://doi.org/10.3390/rs14102410

UNESCO-ONU-Agua. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020: Agua y Cambio Climático. https://es.unesco.org/themes/water-security/wwap/wwdr/2020

Ureta, C., González, E. J., Espinosa, A., Trueba, A., Piñeyro-Nelson, A., & Álvarez-Buylla, E. R. (2020). Maize yield in Mexico under climate change. Agricultural Systems, 177, 102697. https://doi.org/10.1016/j.agsy.2019.102697

Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507-511. https://doi.org/doi:10.1016/j.medcli.2010.01.015

Velasco, I., Ochoa, L., & Gutiérrez, C. (2005). Sequía, un problema de perspectiva y gestión. Región y Sociedad, 17(34), 35-71.

http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-39252005000300002&lng=es&tlng=

Veneros, J., García, L., Morales, E., Gómez, V., Torres, M., & López, F. (2020). Aplicación de sensores remotos para el análisis de cobertura vegetal y cuerpos de agua. Idesia (Arica), 38(4), 99-107. https://doi.org/10.4067/S0718-34292020000400099

Wang, Z., Liu, J., Li, J., & Zhang, D. D. (2018). Multi-spectral water index (MuWI): a native 10-m multi-spectral water index for accurate water mapping on Sentinel-2. Remote Sensing, 10(10), 1643. https://doi.org/10.3390/rs10101643

Wickel, B. (A. J.)., Colditz, R., Ressl, R., Kucharski, J., & Salinas-Rodríguez, S. (2020). Monitoring Hydroperiod and Hydropatterns of coastal wetland systems in Mexico using Landsat time series. EGU General Assembly 2020, EGU2020-12991. https://doi.org/10.5194/egusphere-egu2020-12991

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179

Yudha, I. S. (2023). Detection of changes in water surface area in Limboto Lake using landsat data from 1990 to 2020. IOP Conference Series: Earth and Environmental Science, 1127(1), 012021. https://doi.org/10.1088/1755-1315/1127/1/012021

Yue, L., Li, B., Zhu, S., Yuan, Q., & Shen, H. (2023). A fully automatic and high-accuracy surface water mapping framework on Google Earth Engine using Landsat time-series. International Journal of Digital Earth, 16(1), 210-233. https://doi.org/10.1080/17538947.2023.2166606

Zamora-Rivas, D. (2019). Space-temporal study in the protected natural area of Xochimilco Lake with remote sensing in the period 1987-2016. In Proceedings of the 1st International Conference on Geospatial Information Sciences, 13, 62-69. https://doi.org/10.29007/bfkp