Publicado 2024-03-06
Cómo citar
Resumen
La sobreexplotación de los cuerpos de agua aunado a las sequías y el impacto del cambio climático reducen el agua disponible para actividades humanas, lo cual genera serios problemas económicos y sociales. Por tanto, una tarea imprescindible es el monitoreo del estado de los cuerpos de agua superficiales, y una alternativa rápida, precisa y económica es hacerlo mediante técnicas de teledetección usando sensores remotos satelitales. Estas técnicas ayudan a obtener información a distancia de un determinado objeto situado sobre la superficie terrestre. El objetivo de este estudio fue, mediante el método PRISMA, realizar una revisión de las aplicaciones de los sensores remotos en el monitoreo de cuerpos de agua para dar alternativas de uso de los índices de agua. El índice de agua modificado de diferencia normalizada (MNDWI, por sus siglas en inglés) y el índice de extracción de agua automatizado (AWEI, por sus siglas en inglés) son los más adecuados debido a que son fáciles de construir e interpretar, además de que tienen alta precisión.
Citas
- Abbaspour, M., Javid, A. H., Mirbagheri, S. A., Ahmadi Givi, F., & Moghimi, P. (2012). Investigation of lake drying attributed to climate change. International Journal of Environmental Science and Technology, 9, 257-266. https://doi.org/10.1007/s13762-012-0031-0
- Ali, D. A., Deininger, K., & Monchuk, D. (2020). Using satellite imagery to assess impacts of soil and water conservation measures: evidence from Ethiopia’s Tana-Beles watershed. Ecological Economics, 169, 106512. https://doi.org/10.1016/j.ecolecon.2019.106512
- Ariza, A., Roa, O. J., Serrato, P. K., & León, H. A. (2018). Uso de índices espectrales derivados de sensores remotos para la caracterización geomorfológica en zonas insulares del Caribe colombiano. Perspectiva Geográfica, 23, 105-122. https://doi.org/10.19053/01233769.5863
- Arreola-Esquivel, M., Delgadillo-Herrera, M., Toxqui-Quitl, C., & Padilla-Vivanco, A. (2019). Index-based methods for water body extraction in satellite data. Proceedings of Spie, 111372N. https://doi.org/10.1117/12.2529756
- Asfaw, W., Haile, A. T., & Rientjes, T. (2020). Combining multisource satellite data to estimate storage variation of a lake in the Rift Valley Basin, Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 89, 102095. https://doi.org/10.1016/j.jag.2020.102095
- Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: a case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/j.wace.2017.12.002
- Bangira, T., Alfieri, S. M., Menenti, M., & van Niekerk, A. (2019). Comparing thresholding with machine learning classifiers for mapping complex water. Remote Sensing, 11(11), 1351. https://doi.org/10.3390/rs11111351
- Benefoh, D. T., Villamor, G. B., van Noordwijk, M., Borgemeister, C., Asante, W. A., & Asubonteng, K. O. (2018). Assessing land-use typologies and change intensities in a structurally complex Ghanaian cocoa landscape. Applied Geography, 99, 109–119. https://doi.org/10.1016/j.apgeog.2018.07.027
- Bhaga, T. D., Dube, T., Shekede, M. D., & Shoko, C. (2020). Impacts of climate variability and drought on surface water resources in sub-Saharan Africa using remote sensing: a review. Remote Sensing, 12(24), 4184. https://doi.org/10.3390/rs12244184
- Caballero, M., & Vázquez, G. (2019). Lagos como sensores de cambio climático: el caso de La Alberca de Tacámbaro, Michoacán, México. TIP Revista Especializada en Ciencias Químico-Biológicas, 22, 1-8. https://doi.org/10.22201/fesz.23958723e.2019.0.193
- Calvario, G., Hernández, C., Lazkano, E., Sierra, B., Dalmau, O., & Alarcón, T. (2017). Machine learning approach to fuse multiple band for water bodies detection. 3rd International Conference on Computer Science Networks and Information Technology, August 26-27, Montreal, Canada. https://www.researchgate.net/profile/Gabriela-Calvario-2/publication/321151332_MACHINE_LEARNING_APPROACH_TO_FUSE_MULTIPLE_BAND_FOR_WATER_BODIES_DETECTION/links/5a11d120a6fdccc2d79b64db/MACHINE-LEARNING-APPROACH-TO-FUSE-MULTIPLE-BAND-FOR-WATER-BODIES-DETECTION.pdf
- Calvario, G., Dalmau, O., Alarcón, T. E., Sierra, B., & Hernández, C. (2018). Selection and fusion of spectral indices to improve water body discrimination. IEEE Access, 6, 72952-72961. https://doi.org/10.1109/ACCESS.2018.2881430
- Castilla, J. L. (2016). IPICIM: Módulo clasificador de imágenes ópticas multiespectrales aplicado al área de geociencias [Tesis de posgrado]. Instituto Potosino de Investigación Científica y Tecnológica, A. C. https://ipicyt.repositorioinstitucional.mx/jspui/bitstream/1010/459/3/TMIPICYTC3I62016.pdf
- Castillo, M. D. (2003). Morfometría de lagos. Una aplicación a los lagos del Pirineo. Universitat de Barcelona.
- Castro-Lazcarro, M., Davydova-Belitskaya, V., & Cárdenas-Tristán, A. (2021). Assessment of climate indices and NDWI analysis in Lerma Chapala basin. Preprints, 2021020067. https://doi.org/10.20944/preprints202102.0067.v1
- Chapala, L., Pátzcuaro, L., Cuitzeo, L., & López-Caloca, A. A. (2015). Inpainting restoration for inland waters Mexico ecosystems. 2015 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), Annecy, France. https://doi.org/10.1109/Multi-Temp.2015.7245782
- Colditz, R. R., Souza, C. T., Vazquez, B., Wickel, A. J., & Ressl, R. (2018). Analysis of optimal thresholds for identification of open water using MODIS-derived spectral indices for two coastal wetland systems in Mexico. International Journal of Applied Earth Observation and Geoinformation, 70, 13-24. https://doi.org/10.1016/j.jag.2018.03.008
- Comisión Nacional del Agua (Conagua). (2018). Estadísticas del agua en México 2018.Conagua. https://files.conagua.gob.mx/conagua/publicaciones/publicaciones/eam2018.pdf
- Comisión Nacional del Agua (Conagua). (2019). Más de 66 por ciento de México con algún grado de sequía. https://www.gob.mx/conagua/prensa/mas-de-66-por-ciento-de-mexico-con-algun-grado-de-sequia
- Danladi, I. B., Gül, M., & Ateş, E. (2020). Response of the barrier island coastal region of southwestern Nigeria to climate and non-climate forcing. African Journal of Marine Science, 42(1), 43–51. https://doi.org/10.2989/1814232X.2020.1727953
- Dávila, J., Díaz, R. E., Navarro, L. A., & Romeo, E. (2018). Las presas de jales en el noroeste del estado de Sonora: una aproximación geográfica mediante percepción remota. Investigaciones Geográficas, (97), 1-18. https://doi.org/10.14350/rig.59624
- Del-Toro-Guerrero, F. J., Daesslé, L. W., Méndez-Alonzo, R., & Kretzschmar, T. (2022). Surface reflectance–derived spectral indices for drought detection: application to the Guadalupe Valley basin, Baja California, Mexico. Land, 11(6), 783. https://doi.org/10.3390/land11060783
- El-Asmar, H. M., Hereher, M. E., & El-Kafrawy, S. B. (2013). Surface area change detection of the Burullus Lagoon, North of the Nile Delta, Egypt, using water indices: a remote sensing approach. Egyptian Journal of Remote Sensing and Space Science, 16(1), 119-123. https://doi.org/10.1016/j.ejrs.2013.04.004
- Escobar-Flores, J. G., Torres, J., Valdez, R., Álvarez, S., Galina, P., & Sandoval, S. (2017). Detection of waterholes by Vegetation Index in the habitat of bighorn sheep (Ovis Canadensis) in Baja California. PeerJ Preprints, 5, e2999v1. https://doi.org/10.7287/peerj.preprints.2999v1
- Escobar-Flores, J. G., Sandoval, S., Valdez, R., Shahriary, E., Torres, J., Alvarez-Cardenas, S., & Gallina-Tessaro, P. (2019). Waterhole detection using a vegetation index in desert bighorn sheep (Ovis canadensis cremnobates) habitat. PLoS One, 14(1), e0211202. https://doi.org/10.1371/journal.pone.0211202
- Fernández, J. D., Gallegos, C. A., Padilla, J. A., Barranco, A. I., Vázquez, J. A., & Correa, P. J. (2021). Detección automática de cuerpos de agua del bajío utilizando parámetros morfométricos obtenidos de imágenes satelitales y procesados con redes neuronales. Pistas Educativas, 43(140), 90-104. https://pistaseducativas.celaya.tecnm.mx/index.php/pistas/article/view/2599/2032
- Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029
- Fujihara, Y., Tanakamaru, H., Tada, A., Ahmed, B. M., & Eltaib, K. A. (2020). Analysis of cropping patterns in Sudan’s Gash Spate Irrigation System using Landsat 8 images. Journal of Arid Environments, 173, 104044. https://doi.org/10.1016/j.jaridenv.2019.104044
- Gómez-Palacios, D., Torres, M. A., & Reinoso, E. (2017). Flood mapping through principal component analysis of multitemporal satellite imagery considering the alteration of water spectral properties due to turbidity conditions. Geomatics, Natural Hazards and Risk, 8(2), 607-623. https://doi.org/10.1080/19475705.2016.1250115
- Herndon, K., Muench, R., Cherrington, E., & Griffin, R. (2020). An assessment of surface water detection methods for water resource management in the Nigerien Sahel. Sensors, 20(2), 431. https://doi.org/10.3390/s20020431
- Intergovernmental Panel on Climate Change (IPCC). (2023). Summary for Policymakers. En H. Lee & J. Romero (eds.), Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1-34). IPCC. https://doi.org/10.59327/IPCC/AR6-9789291691647.001
- Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Noges, T., Noges, P., Attayde, J. L., Zohary, T., Coppens, J., Bucak, T., Fernandes, R., Sousa, F. R., Kernan, M., Søndergaard, M., & Beklioğlu, M. (2015). Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 750, 201-227. https://doi.org/10.1007/s10750-014-2169-x
- Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J., & Xiao, T. (2014). An automated method for extracting rivers and lakes from landsat imagery. Remote Sensing, 6(6), 5067-5089. https://doi.org/10.3390/rs6065067
- Jin, C., Xiao, X., Merbold, L., Arneth, A., Veenendaal, E., & Kutsch, W. L. (2013). Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa. Remote Sensing of Environment, 135, 189–201. https://doi.org/10.1016/j.rse.2013.03.033
- Kasampalis, D. A., Alexandridis, T. K., Deva, C., Challinor, A., Moshou, D., & Zalidis, G. (2018). Contribution of remote sensing on crop models: a review. Journal of Imaging, 4(4), 52. https://doi.org/10.3390/jimaging4040052
- Krinner, G., & Boike, J. (2010). A study of the large-scale climatic effects of a possible disappearance of high-latitude inland water surfaces during the 21st century. Boreal Environment Research, 15, 203-217. https://epic.awi.de/id/eprint/20281/
- Landa, R., Magaña, V., & Neri, C. (2008). Agua y clima: elementos para la adaptación al cambio climático. Semarnat. https://www.atmosfera.unam.mx/wp-content/uploads/2017/12/agua-y-clima.pdf
- Leal, O. A., Gómez, M. A., Saldaña, M. P., & de la Maza, M. (2019). Tendencias de cambio en los humedales de Cuatro Ciénegas, Coahuila, México. Alter, 20, 57-77. https://static1.squarespace.com/static/552c00efe4b0cdec4ea42d9f/t/5f1a030c0bfb640dc274b3bc/1595540239064/5-ALTER20-tendencias2.pdf
- Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., & Zhang, X. (2013). A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing, 5(11), 5530–5549. https://doi.org/10.3390/rs5115530
- López, P. A., López, E., Martínez, J. A., & Puebla, J. H. (2019). Water bodies detection using supervised learning algorithms. IEEE International Fall Meeting on Communications and Computing (ROC&C), Acapulco, México.https://doi.org/10.1109/ROCC.2019.8873535
- Luna, J. D. (2017). Las presas de jales en la zona Noroeste del Estado de Sonora: una aproximación geográfica mediante Percepción Remota. El Colegio de Sonora. https://biblioteca.colson.edu.mx/e-docs/RED/RED001132.pdf
- Magaña, V. O., & Neri, C. (2012). Cambio climático y sequías en México. Ciencia-Academia Mexicana de Ciencias, 63(4), 26-35.
- https://biblat.unam.mx/es/revista/ciencia-academia-mexicana-de-ciencias/articulo/cambio-climatico-y-sequias-en-mexico
- Malahlela, O. E. (2016). Inland waterbody mapping: towards improving discrimination and extraction of inland surface water features. International Journal of Remote Sensing, 37(19), 4574–4589. https://doi.org/10.1080/01431161.2016.1217441
- Maldonado, D. (2022). Investigating changes in Mangrove cover and conservation policy in the protected area of Yum Balam, Mexico, 1981-2020. Carleton University. https://repository.library.carleton.ca/concern/etds/j9602172k
- Martínez, P. F., Díaz-Delgado, C., & Moeller-Chavez, G. (2019). Seguridad hídrica en México: diagnóstico general y desafíos principales. Ingeniería del Agua, 23(2), 107-121. https://doi.org/10.4995/ia.2019.10502
- Masocha, M., Dube, T., Makore, M., Shekede, M. D., & Funani, J. (2018). Surface water bodies mapping in Zimbabwe using landsat 8 OLI multispectral imagery: a comparison of multiple water indices. Physics and Chemistry of the Earth, Parts A/B/C, 106, 63–67. https://doi.org/10.1016/j.pce.2018.05.005
- McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
- Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. https://doi.org/10.1126/sciadv.1500323
- Menarguez, M. A. (2015). Global water body mapping from 1984 to 2015 using global high resolution multispectral satellite imagery. University of Oklahoma.
- Mozafari, M., Hosseini, Z., Fijani, E., Eskandari, R., Siahpoush, S., & Ghader, F. (2022). Effects of climate change and human activity on lake drying in Bakhtegan Basin, southwest Iran. Sustainable Water Resources Management, 8(109). https://doi.org/10.1007/s40899-022-00707-z
- Mullen, C., & Muller, M. F. (2020). Assessing historic water extents in rapidly changing lakes: a hybrid remote sensing classification approach. Hydrology and Earth System Sciences Discussions, 1-17. https://doi.org/10.5194/hess-2020-198
- Murray, H., & Khaki, M. (2021). Analysis of Surface Water Areal changes using Remote Sensing Data. Advances in Environmental and Engineering Research, 2(3), 019. https://doi.org/10.21926/aeer.210301z
- Nadeem, A. A., Zha, Y., Shi, L., Ali, S., Wang, X., Zafar, Z., Afzal, Z., & Tariq, M. A. U. R. (2023). Spatial downscaling and gap-filling of SMAP soil moisture to high resolution using MODIS surface variables and machine learning approaches over ShanDian river basin, China. Remote Sensing, 15(3), 812. https://doi.org/10.3390/rs15030812
- Ndehedehe, C. E., Ferreira, V. G., Onojeghuo, A. O., Agutu, N. O., Emengini, E., & Getirana, A. (2020). Influence of global climate on freshwater changes in Africa’s largest endorheic basin using multi-scaled indicators. Science of the Total Environment, 737, 139643. https://doi.org/10.1016/j.scitotenv.2020.139643
- Noyola-Medrano, C., & Martínez-Sías, V. A. (2017). Assessing the progress of desertification of the southern edge of Chihuahuan Desert: a case study of San Luis Potosi Plateau. Journal of Geographical Sciences, 27(4), 420-438. https://doi.org/10.1007/s11442-017-1385-5
- Orimoloye, I. R., Ololade, O. O., Mazinyo, S. P., Kalumba, A. M., Ekundayo, O. Y., Busayo, E. T., Akinsanola, A. A., & Nel, W. (2019). Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon, 5(7), e02148. https://doi.org/10.1016/j.heliyon.2019.e02148
- Ortega, D., Cruz, J. D. L., & Castellano, H. (2018). Peligro, vulnerabilidad y riesgo por sequía en el contexto del cambio climático en México. Instituto Mexicano de Tecnología del Agua (IMTA).
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., Moher, D., Yepes-Nuñez, J. J., Urrútia, G., Romero-García, M., & Alonso-Fernández, S. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016
- Pech, F., Sánchez, J. V., & Sánchez, H. (2020). Análisis de zonas de cultivo y cuerpos de agua mediante el cálculo de índices radiométricos con imágenes Sentinel-2. Lámpsakos, (24), 48-59. https://doi.org/10.21501/21454086.3601
- Pricope, N. G., Mapes, K. L., & Woodward, K. D. (2019). Remote sensing of human-environment interactions in global change research: a review of advances, challenges and future directions. Remote Sensing, 11(23), 2783. https://doi.org/10.3390/rs11232783
- Rico, E., Chicote, A., González, M. E., & Montes, C. (1995). Batimetría y análisis morfométrico del lago de Arreo (N. España). Limnetica, 11(1), 55-58. https://repositorio.uam.es/bitstream/handle/10486/13666/64234_L11a055_Batimetria_lago_Arreo.pdf?sequence=1
- Rojas-Villalobos, H. L. (2019). A water informatics approach to exploring the hydrological systems of basins with limited information; the case of the Bustillos Lagoon, Chihuahua, Mexico [Tesis doctoral]. New Mexico State University. https://zenodo.org/records/4302787
- Rojas-Villalobos, H., Samani, Z., Brown, C., Alatorre-Cejudo, L., Stringam, B., & Salas-Aguilar, V. (2022). Comparación de estimaciones de modelos de evaporación REEM y EEFlux en cuerpos de agua someros. Caso: laguna de Bustillos, Chihuahua, México. Tecnología y Ciencias del Agua, 13(6), 209-248. https://doi.org/10.24850/j-tyca-13-06-05
- Romero, F. S. (2006). La teledetección satelital y los sistemas de protección ambiental. Revista AquaTIC, 24, 13-41. http://revistaaquatic.com/ojs/index.php/aquatic/article/view/212
- Saiz-Rodríguez, J. A. (2020). Evaluación de inundaciones e islas de calor urbano para la planificación de espacios verdes urbanos mediante teledetección, caso de estudio: Mexicali, Baja California [Tesis Doctoral]. Universidad Autónoma de Baja California. https://repositorioinstitucional.uabc.mx/entities/publication/78d9e234-bda6-4a00-89d6-5f543854e1ca
- Sánchez, J. V., Pech-May, F., Sánchez, H. G., & Magaña-Govea, J. (2021). Mapeo de inundaciones utilizando imágenes satelitales SAR en Google Earth Engine. Research in Computing Science, 150(4), 83-95. https://rcs.cic.ipn.mx/2021_150_4/Mapeo%20de%20inundaciones%20utilizando%20imagenes%20satelitales%20SAR%20en%20Google%20Earth%20Engine.pdf
- Sánchez, G. C., Dalmau, O., Alarcón, T. E., Sierra, B., & Hernández, C. (2018). Selection and fusion of spectral indices to improve water body discrimination. IEEE Access, 6, 72952-72961. https://doi.org/10.1109/ACCESS.2018.2881430
- Sandoval, S., & Escobar-Flores, J. G. (2020). Changes in water surface area during the past 30 years in a ramsar wetland in Durango, Mexico using landsat data. IEEE International Geoscience and Remote Sensing Symposium, 5093-5095. https://doi.org/10.1109/IGARSS39084.2020.9323537
- Sandoval, S., Escobar-Flores, J. G., & Sánchez-Ortíz, E. (2020). Inventario de cuerpos de agua de la Sierra Madre Occidental (México) usando SIG y percepción remota. Investigaciones Geográficas, (102). https://doi.org/10.14350/rig.59975
- Sedeño-Díaz, J. E., & López-López, E. (2021). The influence of climate change on river corridors in drylands: the case of the Tehuacán-Cuicatlán biosphere reserve. Frontiers in Environmental Science, 9, 681703. https://doi.org/10.3389/fenvs.2021.681703
- Slagter, B., Tsendbazar, N. E., Vollrath, A., & Reiche, J. (2020). Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: a case study in the St. Lucia wetlands, South Africa. International Journal of Applied Earth Observation and Geoinformation, 86, 102009. https://doi.org/10.1016/j.jag.2019.102009
- Soria-Ruiz, J., Fernández-Ordoñez, Y. M., Ambrosio-Ambrosio, J. P., Escalona-Maurice, M. J., Medina-García, G., Sotelo-Ruiz, E. D., & Ramirez-Guzman, M. E. (2022). Flooded extent and depth analysis using optical and SAR remote sensing with machine learning algorithms. Atmosphere, 13(11), 1852. https://doi.org/10.3390/atmos13111852
- Tapia-Silva, F. O., & López-Caloca, A. A. (2018). Calculating long-term changes in Lake Chapala’s area and water volume using remote sensing and field data. Journal of Applied Remote Sensing, 12(4), 042805. https://doi.org/10.1117/1.JRS.12.042805
- Tassew, B. G., Belete, M. A., & Miegel, K. (2021). Assessment and analysis of morphometric characteristics of Lake Tana sub-basin, Upper Blue Nile Basin, Ethiopia. International Journal of River Basin Management, 21(2), 1-15. https://doi.org/10.1080/15715124.2021.1938091
- Tulbure, M. G., Broich, M., Stehman, S. V., & Kommareddy, A. (2016). Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sensing of Environment, 178, 142-157. https://doi.org/10.1016/j.rse.2016.02.034
- Tottrup, C., Druce, D., Meyer, R. P., Christensen, M., Riffler, M., Dulleck, B., Rastner, P., Jupova K., Sokoup, T., Haag, A., Cordeiro, M. C. R., Martinez, J. M., Franke, J., Schwarz, M., Vanthof, V., Liu, S., Zhou, H., Marzi, D., Rudiyanto, R., Thompson, M., Hiestermann, J., Alemohammad, H., Masse, A., Sannier, C., Wangchuk, S., Schumann, G., Giustarini, L., Hallowes, J., Markert K., & Paganini, M. (2022). Surface water dynamics from space: a round robin intercomparison of using optical and SAR high-resolution satellite observations for regional surface water detection. Remote Sensing, 14(10), 2410. https://doi.org/10.3390/rs14102410
- UNESCO-ONU-Agua. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020: Agua y Cambio Climático. https://es.unesco.org/themes/water-security/wwap/wwdr/2020
- Ureta, C., González, E. J., Espinosa, A., Trueba, A., Piñeyro-Nelson, A., & Álvarez-Buylla, E. R. (2020). Maize yield in Mexico under climate change. Agricultural Systems, 177, 102697. https://doi.org/10.1016/j.agsy.2019.102697
- Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507-511. https://doi.org/doi:10.1016/j.medcli.2010.01.015
- Velasco, I., Ochoa, L., & Gutiérrez, C. (2005). Sequía, un problema de perspectiva y gestión. Región y Sociedad, 17(34), 35-71.
- http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-39252005000300002&lng=es&tlng=
- Veneros, J., García, L., Morales, E., Gómez, V., Torres, M., & López, F. (2020). Aplicación de sensores remotos para el análisis de cobertura vegetal y cuerpos de agua. Idesia (Arica), 38(4), 99-107. https://doi.org/10.4067/S0718-34292020000400099
- Wang, Z., Liu, J., Li, J., & Zhang, D. D. (2018). Multi-spectral water index (MuWI): a native 10-m multi-spectral water index for accurate water mapping on Sentinel-2. Remote Sensing, 10(10), 1643. https://doi.org/10.3390/rs10101643
- Wickel, B. (A. J.)., Colditz, R., Ressl, R., Kucharski, J., & Salinas-Rodríguez, S. (2020). Monitoring Hydroperiod and Hydropatterns of coastal wetland systems in Mexico using Landsat time series. EGU General Assembly 2020, EGU2020-12991. https://doi.org/10.5194/egusphere-egu2020-12991
- Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033. https://doi.org/10.1080/01431160600589179
- Yudha, I. S. (2023). Detection of changes in water surface area in Limboto Lake using landsat data from 1990 to 2020. IOP Conference Series: Earth and Environmental Science, 1127(1), 012021. https://doi.org/10.1088/1755-1315/1127/1/012021
- Yue, L., Li, B., Zhu, S., Yuan, Q., & Shen, H. (2023). A fully automatic and high-accuracy surface water mapping framework on Google Earth Engine using Landsat time-series. International Journal of Digital Earth, 16(1), 210-233. https://doi.org/10.1080/17538947.2023.2166606
- Zamora-Rivas, D. (2019). Space-temporal study in the protected natural area of Xochimilco Lake with remote sensing in the period 1987-2016. In Proceedings of the 1st International Conference on Geospatial Information Sciences, 13, 62-69. https://doi.org/10.29007/bfkp