Simulación de comunicación emergente en robótica: apoyo a las cadenas de suministro empleando computación evolutiva
PDF (English)

Cómo citar

Aldana Franco, F., Aldana Franco, R., Álvarez Sánchez, E. J., Montes González, F., & Leyva Retureta, J. G. (2024). Simulación de comunicación emergente en robótica: apoyo a las cadenas de suministro empleando computación evolutiva. Acta Universitaria, 34, 1–15. https://doi.org/10.15174/au.2024.3939

Resumen

Se presenta un modelo emergente de cooperación y comunicación que involucra un conjunto de robots MarxBot. La tarea consiste en recolección de materia prima almacenada y su depósito en la banda de procesamiento, además de la recolección del elemento fabricado y su depósito en una banda de empaquetado. Los robots son controlados mediante redes neuronales artificiales que son optimizadas mediante un algoritmo genético en el simulador robótico conocido como FARSA (framework for autonomous robotics simulation and analysis). Se prueba en un ambiente simulado de grupos homogéneos de robots con comunicación emergente basada en diodos emisores de luz (LED, por sus siglas en inglés), los cuales tienen un mejor rendimiento en la tarea propuesta que un sistema de comunicación con señales preestablecidas y un grupo que no tiene capacidad de comunicación. Esto se debe al nivel de organización provisto por la emergencia de señales que proviene del grupo y de la interacción con el entorno. Esto demuestra que la perspectiva de la robótica evolutiva es aplicable a las necesidades de la Industria 4.0.

https://doi.org/10.15174/au.2024.3939
PDF (English)

Citas

Abdolrasol, M. G. M., Hussain, S. M. S., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S., & Milad, A. (2021). Artificial neural networks based optimization techniques: a review. Electronics, 10(21), 2689. https://doi.org/10.3390/electronics10212689

Aldana-Franco, F., Montes-González, F., & Nolfi, S. (2024). The improvement of signal communication for a foraging task using evolutionary robotics. Journal of Applied Research and Technology, 22(1), 90-101. https://doi.org/10.22201/icat.24486736e.2024.22.1.1652

Arunkumar, S., Suganeswaran, K., Nithyavathy, N., & Gobinath, V. K. (2020). Semi-automatic cloth bag making machine. Materials Today: Proceedings, 33, 3454-3457. https://doi.org/10.1016/j.matpr.2020.05.353

Asad, R., Hayakawa, T., & Yasuda, T. (2023). Evolutionary design of cooperative transport behavior for a heterogeneous robotic swarm. Journal of Robotics and Mechatronics, 35(4), 1007-1015. https://doi.org/10.20965/jrm.2023.p1007

Bragança, S., Costa, E., Castellucci, I., & Arezes, P. M. (2019). A brief overview of the use of collaborative robots in industry 4.0: human role and safety. Occupational and Environmental Safety and Health, 641-650. https://doi.org/10.1007/978-3-030-14730-3_68

Cáceres, C. A., Rosário, J. M., & Amaya, D. (2020). Control structure for a car-like robot using artificial neural networks and genetic algorithms. Neural Computing and Applications, 32(20), 15771-15784. https://doi.org/10.1007/s00521-018-3514-1

Cambier, N., Miletitch, R., Frémont, V., Dorigo, M., Ferrante, E., & Trianni, V. (2020). Language evolution in swarm robotics: a perspective. Frontiers in Robotics and AI, 7, 12. https://doi.org/10.3389/frobt.2020.00012

Carvalho, J. T., & Nolfi, S. (2024). The role of morphological variation in evolutionary robotics: maximizing performance and robustness. Evolutionary Computation, 1-18. https://doi.org/10.1162/evco_a_00336

Castelló, E., Jiménez, E., Lopez-Presa, J. L., & Martín-Rueda, J. (2021). Following leaders in byzantine multirobot systems by using blockchain technology. IEEE Transactions on Robotics, 38(2), 1101-1117. https://doi.org/10.1109/TRO.2021.3104243

Chaabouni, R., Kharitonov, E., Dupoux, E., & Baroni, M. (2021). Communicating artificial neural networks develop efficient color-naming systems. Proceedings of the National Academy of Sciences, 118(12), e2016569118. https://doi.org/10.1073/pnas.2016569118

Chavan, S., Patil, U., Koshy, S. S., & Srikanth, S. V. (2021). Garbage zero (Garb0): an IoT framework for effective garbage management in smart cities. In 2021 International Conference on Artificial intelligence and Smart Systems (ICAIS), 1336-1342. IEEE. https://doi.org/10.1109/ICAIS50930.2021.9395970

Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211. https://doi.org/10.3390/su12198211

Devi, K. V. R., Smitha, B. S., Lakhanpal, S., Kalra, R., Sethi, V. A., & Thajil, S. K. (2024). A review: swarm robotics: cooperative control in multi-agent systems. In E3S Web of Conferences, 505, (03013). EDP Sciences. https://doi.org/10.1051/e3sconf/202450503013

Doncieux, S., Bredeche, N., Mouret, J. B., & Eiben, A. E. G. (2015). Evolutionary robotics: what, why, and where to. Frontiers in Robotics and AI, 2, 4. https://doi.org/10.3389/frobt.2015.00004

Feng, H., Xue, Y., Li, H., Tang, Z., Wang, W., Wei, Z., Zeng, G., Li, M., & Dai, J. S. (2023). Deformable morphing and multivariable stiffness in the evolutionary robotics. International Journal of Automotive Manufacturing and Materials, 2(4), 1. https://doi.org/10.53941/ijamm.2023.100013

Ghadge, A., Er Kara, M., Moradlou, H., & Goswami, M. (2020). The impact of Industry 4.0 implementation on supply chains. Journal of Manufacturing Technology Management, 31(4), 669-686. https://doi.org/10.1108/JMTM-10-2019-0368

Gigliotta, O. (2018). Equal but different: task allocation in homogeneous communicating robots. Neurocomputing, 272, 3-9. https://doi.org/10.1016/j.neucom.2017.05.093

Goncalves, C. G., Winroth, M. P., & Ribeiro da Silva, E. H. D. (2020). Sustainable manufacturing in Industry 4.0: an emerging research agenda. International Journal of Production Research, 58(5), 1462-1484. https://doi.org/10.1080/00207543.2019.1652777

Guan, W., Wu, Y., Xie, C., Chen, H., Cai, Y., & Chen, Y. (2017). High-precision approach to localization scheme of visible light communication based on artificial neural networks and modified genetic algorithms. Optical Engineering, 56(10), 106103. https://doi.org/10.1117/1.OE.56.10.106103

Gupta, N., Khosravy, M., Patel, N., Gupta, S., & Varshney, G. (2020). Evolutionary artificial neural networks: comparative study on state-of-the-art optimizers. Frontier Applications of Nature Inspired Computation, 302-318. https://doi.org/10.1007/978-981-15-2133-1_14

Hiraga, M., & Ohkura, K. (2022). Topology and weight evolving artificial neural networks in cooperative transport by a robotic swarm. Artificial Life and Robotics, 27(2), 324-332. https://doi.org/10.1007/s10015-021-00716-9

Howard, D., Collins, J., & Robinson, N. (2022). Taking shape: a perspective on the future of embodied cognition and a new generation of evolutionary robotics. IOP Conference Series: Materials Science and Engineering, 1261(1), 012018. https://doi.org/10.1088/1757-899X/1261/1/012018

Husbands, P., Shim, Y., Garvie, M., Dewar, A., Domcsek, N., Graham, P., Knight, J., Nowotny, T., & Philippides, A. (2021). Recent advances in evolutionary and bio-inspired adaptive robotics: exploiting embodied dynamics. Applied Intelligence, 51(9), 6467-6496. https://doi.org/10.1007/s10489-021-02275-9

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2021). Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics, 1, 58-75. https://doi.org/10.1016/j.cogr.2021.06.001

Karten, S., Tucker, M., Li, H., Kailas, S., Lewis, M., & Sycara, K. (2023). Interpretable learned emergent communication for human-agent teams. IEEE Transactions on Cognitive and Developmental Systems, 15(4). https://doi.org/10.1109/TCDS.2023.3236599

Kohl, P. L., & Rutschmann, B. (2021). Honey bees communicate distance via non-linear waggle duration functions. PeerJ, 9, e11187. https://doi.org/10.7717/peerj.11187

Lan, Q., Wen, D., Zhang, Z., Zeng, Q., Chen, X., Popovski, P., & Huang, K. (2021). What is semantic communication? A view on conveying meaning in the era of machine intelligence. Journal of Communications and Information Networks, 6(4), 336-371. https://doi.org/10.23919/JCIN.2021.9663101

Lazaridou, A., & Baroni, M. (2020). Emergent multi-agent communication in the deep learning era. Computation and Language, 1. https://doi.org/10.48550/arXiv.2006.02419

Lins, R. G., & Givigi, S. N. (2021). Cooperative robotics and machine learning for smart manufacturing: platform design and trends within the context of industrial internet of things. IEEE Access, 9, 95444. https://doi.org/10.1109/ACCESS.2021.3094374

López, E. J., Leonards, U., & Hermann, G. (2022). Cognitive control decision and human-robot collaboration. In A. Cangelosi & M. Asada (eds.), Cognitive Robotics (pp. 337-360). MIT Press. https://doi.org/10.7551/mitpress/13780.003.0023

Mastos, T. D., Nizamis, A., Vafeiadis, T., Alexopoulos, N., Ntinas, C., Gkortzis D., Papadopoulos, A., Ioannidis, D., & Tzovaras, D. (2020). Industry 4.0 sustainable supply chains: an application of an IoT enabled scrap metal management solution. Journal of cleaner production, 269, 122377. https://doi.org/10.1016/j.jclepro.2020.122377

Massera, G., Ferrauto, T., Gigliotta, O., & Nolfi, S. (2013). Farsa: an open software tool for embodied cognitive science. Advances in Artificial Life, (12), 538-545. https://doi.org/10.1162/978-0-262-31709-2-ch078

Shamout, M., Ben-Abdallah, R., Alshurideh, M., Alzoubi, H., Kurdi, B. A., & Hamadneh, S. (2022). A conceptual model for the adoption of autonomous robots in supply chain and logistics industry. Uncertain Supply Chain Management, 10(2), 577-592. https://doi.org/10.5267/j.uscm.2021.11.006

Milano, N., Carvalho, J. T., & Nolfi, S. (2019). Moderate environmental variation across generations promotes the evolution of robust solutions. Artificial life, 24(4), 277-295. https://doi.org/10.1162/artl_a_00274

Miletitch, R., Reina, A., Dorigo, M., & Trianni, V. (2022). Emergent naming conventions in a foraging robot swarm. Swarm Intelligence, 16(3), 211-232. https://doi.org/10.1007/s11721-022-00212-1

Mourtzis, D., Papakostas, N., & Makris, S. (2019). Complexity in Industry 4.0. Systems and Networks. Complexity, 2019, 1-2. https://doi.org/10.1155/2019/7817046

Muralidharan, A., & Mostofi, Y. (2021). Communication-aware robotics: Exploiting motion for communication. Annual Review of Control, Robotics, and Autonomous Systems, 4, 115-139. https://doi.org/10.1146/annurev-control-071420-080708

Pagliuca, P., & Nolfi, S. (2022). The dynamic of body and brain co-evolution. Adaptive Behavior, 30(3), 245-255. https://doi.org/10.1177/1059712321994685

Pagliuca, P., & Vitanza, A. (2023). N-Mates evaluation: a new method to improve the performance of genetic algorithms in heterogeneous multi-agent systems. https://ceur-ws.org/Vol-3579/paper9.pdf

Palacios-Leyva, R., Aldana-Franco, F., Lara-Guzmán, B., & Montes-González, F. (2017). The impact of population composition for cooperation emergence in evolutionary robotics. International Journal of Combinatorial Optimization Problems and Informatics, 8(3), 20-32. https://ijcopi.org/ojs/article/view/15

Patel, S., Wani, S., Jain, U., Schwing, A., Lazebnik, S., Savva, M., & Chang, A. X. (2021). Interpretation of emergent communication in heterogeneous collaborative embodied agents. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 15953-15963). https://doi.org/10.1109/ICCV48922.2021.01565

Sathiya, V., Chinnadurai, M., Ramabalan, S., & Appolloni, A. (2021). Mobile robots and evolutionary optimization algorithms for green supply chain management in a used-car resale company. Environment, Development and Sustainability, 23(6), 9110-9138. https://doi.org/10.1007/s10668-020-01015-2

Silva, F., Duarte, M., Correia, L., Oliveira, S. M., & Christensen, A. L. (2016). Open issues in evolutionary robotics. Evolutionary Computation, 24(2), 205-236. https://doi.org/10.1162/EVCO_a_00172

Simione, L., & Nolfi, S. (2020). Long-term progress and behavoir complexification in competitive coevolution. Artificial Life, 26(4), 409-430. https://doi.org/10.1162/artl_a_00329

Steyven, A., Hart, E., & Paechter, B. (2015). The cost of communication: environmental pressure and survivability in mEDEA. In Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference, 1239-1240. https://doi.org/10.1145/2739482.2768489

Thomas, C. K., & Saad, W. (2023). Neuro-symbolic causal reasoning meets signaling game for emergent semantic communications. IEEE Transactions on Wireless Communications, 23(5). https://doi.org/10.1109/TWC.2023.3319981

Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0–a glimpse. Procedia Manufacturing, 20, 233-238. https://doi.org/10.1016/j.promfg.2018.02.034

Wan, J., Tang, S., Li, D., Imran, M., Zhang, C., Liu, C., & Pang, Z. (2019). Reconfigurable smart factory for drug packing in healthcare industry 4.0. IEEE transactions on industrial informatics, 15(1), 507-516. https://doi.org/10.1109/TII.2018.2843811

Yang, J. Q., Wang, R., Ren, Y., Mao, J. Y., Wang, Z. P., Zhou, Y., & Han, S. T. (2020). Neuromorphic engineering: from biological to spike‐based hardware nervous systems. Advanced Materials, 32(52), 2003610. https://doi.org/10.1002/adma.202003610

Zhou, K., Liu, T., & Zhou, L. (2015). Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2147-2152. https://doi.org/10.1109/FSKD.2015.7382284