Vol. 35 (2025): Volumen 35
Artículos de Investigación

Evaluación energética y exergética de un ciclo alternativo de refrigeración por absorción usando mezclas sustitutas al LiBr-H2O

José Luis Rodríguez-Muñoz
Universidad Autónoma del Estado de Hidalgo
José de Jesús Ramírez-Minguela
Universidad de Guanajuato
Jean Fulbert Ituna-Yudonago
Universidad Politécnica Metropolitana de Hidalgo
José Sergio Pacheco-Cedeño
Universidad Autónoma del Estado de Hidalgo
Jorge Zuno-Silva
Universidad Autónoma del Estado de Hidalgo
Carlos Ernesto Borja-Soto
Universidad Autónoma del Estado de Hidalgo

Publicado 2025-06-04

Cómo citar

Rodríguez, J. L., Ramírez-Minguela, J. de J., Ituna-Yudonago, J. F., Pacheco-Cedeño, J. S., Zuno-Silva, J., & Borja-Soto, C. E. (2025). Evaluación energética y exergética de un ciclo alternativo de refrigeración por absorción usando mezclas sustitutas al LiBr-H2O. Acta Universitaria, 35. https://doi.org/10.15174/au.2025.4344

Resumen

En este trabajo, un ciclo de refrigeración por absorción, en el que parte del calor del condensador es recuperado y suministrado al generador (HR-ARS) es evaluado de manera energética y exergética considerando diferentes rangos de temperaturas de generación, condensación/absorción y evaporación. Además, las mezclas CaCl2-LiBr-LiNO3-H2O y CaCl2-LiNO3-KNO3-H2O han sido propuestas como sustitutas al LiBr-H2O en el sistema HR-ARS. Los resultados revelan que la carga térmica del generador y condensador con la configuración alternativa son 1.95%-3.13% y 1.63%-3.76% inferiores que los obtenidos con el sistema convencional de refrigeración por absorción. Por otra parte, las mezclas propuestas presentan mejoras energéticas y exergéticas de 25% a 35% y 10% a 36%, respectivamente, en comparación con la mezcla tradicional LiBr-H2O operando a las mismas condiciones de operación.

Finalmente, se espera que los resultados derivados del presente estudio contribuyan para el análisis, el diseño y la construcción de nuevos sistemas de refrigeración por absorción.

Citas

  1. Arora, A., & Kaushik, S. C. (2009). Theoretical analysis of LiBr/H2O absorption refrigeration systems. International Journal of Energy Research, 33(15), 1321-1340. https://doi.org/10.1002/er.1542.
  2. Ayou, D. S., Wardhana, M. F. V., & Coronas, A. (2023). Performance analysis of a reversible water/LiBr absorption heat pump connected to district heating network in warm and cold climates. Energy, 268, 126679. https://doi.org/10.1016/j.energy.2023.126679
  3. Bao, Y., Zhong, Y., Yang, J., Tang, S., Zhong, S., Feng, W., Ji, J., Li, H., & Liang, B. (2024). Novel working fluid pair of methanol/betaine-urea for absorption refrigeration system driven by low-temperature heat sources. Energy, 298, 131223. https://doi.org/10.1016/j.energy.2024.131223
  4. Belman-Flores, J. M., Barroso-Maldonado, J. M., Rodríguez-Muñoz, A. P., & Camacho-Vázquez, G. (2015). Enhancements in domestic refrigeration, approaching a sustainable refrigerator–A review. Renewable and Sustainable Energy Reviews, 51, 955-968. https://doi.org/10.1016/j.rser.2015.07.003
  5. Braccio, S., Phan, H. T., Wirtz, M., Tauveron, N., & Le Pierrès, N. (2022). Simulation of an ammonia-water absorption cycle using exchanger effectiveness. Applied Thermal Engineering, 213, 118712. https://doi.org/10.1016/j.applthermaleng.2022.118712
  6. Durieux, L., Seyler, F., Laques, A. E., Mitja, D., Delaître, E., & de Souza, I. (2019). From sustainable development to coviability–the viewpoint of earth observation in the era of big data. En O. Barriére et al. (eds.), Coviability of social and ecological systems: reconnecting mankind to the biosphere in an era of global change. Vol. 2 (pp. 285-304). Springer. https://doi.org/10.1007/978-3-319-78111-2_15
  7. Ferwati, M. S., Ahmad, A. M., Takalkar, G. D., & Bicer, Y. (2021). Energy and exergy analysis of parallel flow double effect H2O-[mmim][DMP] absorption refrigeration system for solar powered district cooling. Case Studies in Thermal Engineering, 28, 101382. https://doi.org/10.1016/j.csite.2021.101382
  8. Ghatos, S., Janan, M. T., & Mehdari, A. (2021). Thermodynamic model of a single stage H2O-LiBr absorption cooling. E3S Web of Conferences, 234, 1-7. https://doi.org/10.1051/e3sconf/202123400091
  9. Guo, Y., Ding, Y., Li, J., & Paricaud, P. (2024). The performance of [Emim] Br/H2O as a working pair in the absorption refrigeration system. Next Energy, 2, 100038. https://doi.org/10.1016/j.nxener.2023.100038
  10. Gutiérrez-Urueta, G., Huicochea, A., Rodríguez-Aumente, P., & Rivera, W. (2014). Energy and exergy analysis of water-LiBr absorption systems with adiabatic absorbers for heating and cooling. Energy Procedia, 57, 2676-2685. https://doi.org/10.1016/j.egypro.2014.10.279
  11. Kallitsis, K., Koulocheris, V., Pappa, G., & Voutsas, E. (2023). Evaluation of water+ imidazolium ionic liquids as working pairs in absorption refrigeration cycles. Applied Thermal Engineering, 233, 121201. https://doi.org/10.1016/j.applthermaleng.2023.121201
  12. Lamine, C. M., & Said, Z. (2014). Energy analysis of single effect absorption chiller (LiBr/H2O) in an industrial manufacturing of detergent. Energy Procedia, 50, 105-112. https://doi.org/10.1016/j.egypro.2014.06.013
  13. Li, N., Luo, C., & Su, Q. (2018). A working pair of CaCl2–LiBr–LiNO3/H2O and its application in a single-stage solar-driven absorption refrigeration cycle. International Journal of Refrigeration, 86, 1-13. https://doi.org/10.1016/j.ijrefrig.2017.11.004
  14. Li, Y., Li, N., Luo, C., & Su, Q. (2019a). Study on a quaternary working pair of CaCl2-LiNO3-KNO3/H2O for an absorption refrigeration cycle. Entropy, 21(6), 546. https://doi.org/10.3390/e21060546
  15. Li, Y., Li, N., Luo, C., & Su, Q. (2019b). Thermodynamic performance of a double-effect absorption refrigeration cycle based on a ternary working pair: lithium bromide+ ionic liquids+ water. Energies, 12(21), 4200. https://doi.org/10.3390/en12214200
  16. Liu, X., Ye, Z., Bai, L., & He, M. (2019). Performance comparison of two absorption-compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair. Energy Conversion and Management, 181, 319-330. https://doi.org/10.1016/j.enconman.2018.12.030
  17. Lizarte, R., & Marcos, J. D. (2016). COP optimisation of a triple-effect H2O/LiBr absorption cycle under off-design conditions. Applied Thermal Engineering, 99, 195-205. https://doi.org/10.1016/j.applthermaleng.2015.12.121
  18. Marashli, A., Alfanatseh, E., Shalby, M., & Gomaa, M. R. (2022). Modelling single-effect of Lithium Bromide-Water (LiBr–H2O) driven by an evacuated solar tube collector in Ma'an city (Jordan) case study. Case Studies in Thermal Engineering, 37, 102239. https://doi.org/10.1016/j.csite.2022.102239
  19. Pacheco-Cedeño, J. S., Rodríguez-Muñoz, J. L., Ramírez-Minguela, J. J., & Pérez-García, V. (2023). Comparison of an absorption-compression hybrid refrigeration system and the conventional absorption refrigeration system: Exergy analysis. International Journal of Refrigeration, 155, 81-92. https://doi.org/10.1016/j.ijrefrig.2023.08.003
  20. Razmi, A., Soltani, M., Kashkooli, F. M., & Farshi, L. G. (2018). Energy and exergy analysis of an environmentally-friendly hybrid absorption/recompression refrigeration system. Energy Conversion and Management, 164, 59-69. https://doi.org/10.1016/j.enconman.2018.02.084
  21. Wang, J., Wang, B., Wu, W., Li, X., & Shi, W. (2016). Performance analysis of an absorption-compression hybrid refrigeration system recovering condensation heat for generation. Applied Thermal Engineering, 108, 54-65. https://doi.org/10.1016/j.applthermaleng.2016.07.100
  22. Xu, M., Li, S., Jin, Z., Jiang, W., & Du, K. (2023). The influence of NH3-H2O-LiBr ternary working fluid on the performance and solution circulation in ammonia absorption refrigeration system. Applied Thermal Engineering, 234, 121297. https://doi.org/10.1016/j.applthermaleng.2023.121297
  23. Zhang, X., Cai, L., Liang, Y., Ma, Z., & Zhang, X. (2023). Experimental studies on absorption-compression hybrid refrigeration system using 1,1,1,2-tetrafluoroethane/tetraethylene glycol dimethyl ether as working pair. Applied Thermal Engineering, 223, 120001. https://doi.org/10.1016/j.applthermaleng.2023.120001