Vol. 25 Núm. 1 (2015)
Artículos de Investigación

Síntesis, caracterización y evaluación antimicrobiana in vitro de derivados de sulfonilurea como inhibidores potenciales de la beta-cetoacil-proteína portadora de acilo III sintasa (FabH)

Aluru Raghavendra Guru Prasad
ICFAI Foundation for Higher Education, Sankarpally Road, Hyderabad, AP., India
Badampudi Santosh Kumar
Department of Chemistry, Sri Krishnadevaraya University, Anantapur, A.P., India.
Papammagari Raveendra Reddy
Sri Krishnadevaraya University, Anantapur, A.P., India.
Alvala Mallika
National Institute of Pharmaceutical Education and Research, Balanagar, Hyderabad.
Lakshmana Rao Krishna Rao Ravindranath
Sri Krishnadevaraya University, Anantapur, A.P., India.

Publicado 2015-03-09

Palabras clave

  • Sintasa β-cetoacil-ACP III (FabH),
  • caracterización de derivados de sulfonilurea,
  • actividad antimicrobiana,
  • in vitro,
  • in silico.
  • β-ketoacyl-acyl carrier protein synthase III (FabH),
  • sulphonyl urea derivatives characterization,
  • antimicrobial activity,
  • in vitro,
  • in silico.

Cómo citar

Guru Prasad, A. R., Santosh Kumar, B., Raveendra Reddy, P., Mallika, A., & Ravindranath, L. R. K. R. (2015). Síntesis, caracterización y evaluación antimicrobiana in vitro de derivados de sulfonilurea como inhibidores potenciales de la beta-cetoacil-proteína portadora de acilo III sintasa (FabH). Acta Universitaria, 25(1), 12–21. https://doi.org/10.15174/au.2015.658

Resumen

Se sintetizó una serie de 15 derivados de sulfonilurea (7a-7o) que contiene diversos sustituyentes heterocíclicos, caracterizados por análisis elemental, IR, RMN de 1H y de 13C espectros RMN, y se evaluaron in vitro para actividad antibacteriana y antifúngica. Se realizaron estudios de acoplamiento molecular para calcular las puntuaciones de conexión y proponer el modo de unión de derivados de sulfonilurea con E. coli beta-cetoacil-ACP sintasa III, una enzima clave que cataliza la etapa inicial de la biosíntesis de ácidos grasos a través de un tipo II disociado ácido graso sintasa. Los resultados de este estudio revelaron que los derivados de 7 g, vj, 7l y 7o pueden convertirse en posibles moléculas de plomo para el descubrimiento de fármacos antimicrobianos. Los estudios in vitro confirmaron que los derivados de 7g, 7j, 7l y 7o han demostrado una mejor actividad antimicrobiana que los otros.

 

Citas

  1. Alsaid, M. S., El-Gazzar, M. G. & Ghorab, M. M. (2013). Anticancer activity of novel thiophenes containing a biological active diphenylsulfone, diazepin, piperidine, oxazepine, acryladehyde and sulfonamide moieties. Drug Research (Stuttg), 63(05), 263-269.


  2. Bespalove, G. V., Sedavkina, V. A. & Kulikova, L. K. (1989). Synthesis and antimicrobial activity of 5-substituted -2-imino-pyrrolidines. Khimiko-farmatsevticheskii Zhurnal, 23(8), 949-952.


  3. Camargo-Ordonez, A., Moreno-Reyes, C., Olazarán-Santibanez, F., Martínez-Hernández, S., Bocanegra-García, V. & Riveral, G. (2011). Efficient synthesis of sulfonamide derivatives on solid supportscatalyzed using solvent-free and microwave-assisted methods. Química Nova, 34(5), 787-791.


  4. Cheng, X. C., Wang, Q., Fang, H., Tang, W. & Xu, W. F. (2008). Design, synthesis and preliminary evaluation of novel pyrrolidine derivatives as matrix metalloproteinase inhibitors. European Journal of Medicinal Chemistry, 43(10), 2130-2139.


  5. Davies, C., Heath, R. J., White, S. W. & Rock, C. O. (2000). The 1.8 A crystal structure and active-site architecture of beta-ketoacyl-acyl carrier protein synthase III (FabH) from. Escherichia coli. Structure, 8(2), 185-195.


  6. Dzhuraev, A. D., Karimkulov, A. M. & Makhsulov-Amanov, N. (1992). Antimicrobial properties of novel thiophene derivatives. Khimiko-farmatsevticheskii Zhurnal, 26(1), 73-75.


  7. Huan-Qiu, L., Lei, S., Qing-Shan, L., Peng-Gang, L., Yin, L., Jing, Z. & Hai-Liang, Z. (2009). Synthesis of C(7) modified chrysin derivatives designing to inhibit β-ketoacyl-acyl carrier protein synthase III (FabH) as antibiotics. Bioorganic & Medicinal Chemistry, 17, 6264-6269.


  8. Huang, S. M., Cheng, Y. Y., Chen, M. H., Huang, C. H., Huang, L. J., Hsu, M. H., Kuo, S. C. & Lee, K. H. (2013). Design and synthesis of 2-(3-alkylaminophenyl)-6-(pyrrolidin-1-yl)quinolin-4-ones as potent antitumor agents. Bioinorganic and Medicinal chemistry Letters, 23(3), 699-701.


  9. Jackowski, S., Murphy, C. M. & Cronan, Jr. J. E. (1989). Acetoacetyl-acyl carrier protein synthase; A target for antibioticthiolactamycin. Journal of Biological Chemistry, 264(13), 7624-7629.


  10. Jackowski, S. & Rock, C. O. (1987). Acetoacetyl-acyl carrier protein synthase, A potential regulator for fatty acid biosynthesis in bacteria. Journal of Biological Chemistry, 262(16), 7627-7631.


  11. Kumar, S. & Krishnan, K. (2012). Cytotoxicity and antioxidant activity of 5-(2,4-dimethylbenzyl)pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. Saudi Journal of Biological Sciences, 19(1), 81-86.


  12. Lai, C. Y. & Cronan, J. E. (2003). Beta-ketoacyl-acyl carrier protein synthase III (FabH) is essential for bacterial fatty acid synthesis. Journal of Biological Chemistry, 278(51), 51494-51503.


  13. Magnuson, K., Jackowski, S., Rock, C. O. & Cronan, Jr. J. E. (1993). Regulation of fatty acid biosynthesis, Escherichia coli. Microbiological Reviews, 57(3), 522-542.


  14. Malmström, J., Jonsson, M., Cotgreave, I. A. Hammarström, L., Sjödin, M. & Engman, L. (2001). The antioxidant profile of 2,3-dihydrobenzo[b]furan-5-ol and its 1-thio, 1-seleno and 1-telluroanalogues. Journal of American Chemical Society, 123(15), 3434-3440.


  15. Min, J., Wang, P., Srinivasan, S., Nwachukwu, J. C., Guo, P., Huang, M., Carlson, K. E., Katzenellenbogen, J. A., Nettles, K. W. & Zhou, H. B. (2013). Thiophene-Core Estrogen Receptor Ligands Having Superagonist Activity. Journal of Medical Chemistry, 56(8), 3346-3366.


  16. Oh, S., Kwon, B., Kong, S., Yang, G., Lee, N., Han, D., Goo, J., Siqueira-Neto, J. L., Freitas-Junior, L. H., Liuzzi, M., Lee, J. & Song, R. (2014). Synthesis and biological evaluation of 2-acetamidothiophene-3-carboxamide derivatives against Leishmania donovani. Medical Chemistry Communications, 5(2), 142-146.


  17. Omaima, M. A. & Fatma, A. G. B. (1992). Benzo[b]thiophenes, Part I: Synthesis and Antimicrobial Activity of Benzo[b]thienyl-1,3,4-oxadiazole, -1,2,4-triazoline, and -thiazoline Derivatives. Archiv der Pharmazie, 325(2), 123–127.


  18. Qiu, X., Choudhry, A. E., Janson, C. A. Grooms, M., Daines, R. A., Lonsdale, J. T. & Khandekar, S. S. (2005). Crystal structure and substrate specificity of the β-ketoacyl-acyl carrier protein synthase III (FabH), from Staphylococcus aureus. Protein Science, 14(8), 2087-2094.


  19. Qiu, X., Janson, C. A., Konstantinidis, A. K., Nwagwu, S., Silverman, C., Smith, W. W., Khandekar, S., Lonsdale, J. & Abdel-Meguid, S. S. (1999). Crystal structure of beta-ketoacyl-acyl carrier protein synthase III. A key condensing enzyme in bacterial fatty acid biosynthesis. Journal of Biological Chemistry, 274(51), 36465–36471.



  20. Qiu, X., Janson, C. A., Smith, W. W., Head, M., Lonsdale, J. & Konstantinidis, A. K. (2001). Refined structures of beta-ketoacyl-acyl carrier protein synthase III. Journal of Molecular Biology, 307(1), 341-356.


  21. Santosh Kumar, B., Raveendra Reddy P., Madhu G. & Ravindranath L. K. (2012). Synthesis, characterization and biological evaluation of chiral pyrrolidine sulphonamide mannich bases from tartaricacid. Der Chimica Sinica, 3(5), 1124-1134.


  22. Scarsdale, J. N., Kazanina, G., He, X., Reynolds, K. A. & Wright, H. T. (2001). Crystal structure of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III. Journal of Biological Chemistry, 276(26), 20516-20522.


  23. White., S. W., Zheng, J., Zhang, Y. M. & Rock, C. O. (2005). The structural biology of type II fatty acid biosynthesis. Annual Review of Biochemistry, 74, 791-831.


  24. Wiegand, I., Hilpert, K. & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175.


  25. Yang, Y. S., Zhang, F., Gao, C., Zhang, Y. B., Wang, X. L., Tang, J. F., Sun, J., Gong, H. B., & Zhu, H. L. (2012). Discovery and modification of sulfur-containing heterocyclic pyrazoline derivatives as potential novel class of β-ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. Bioorganic & Medicinal Chemistry Letters, 22(14), 4619-4624.


  26. Yu, V. K., Detistov, O. S. & Orlov, V. D. (2008). Polycyclic systems containing 1,2,4-oxadiazole ring 2. 4-(1,2,4-Oxadiazol-5-yl)pyrrolidin-2-ones: Synthesis and prediction of biological activity. Chemistry of Heterocyclic Compounds, 44(5), 600-605.


  27. Zareef, M., Iqbal, R. & Arfan, M. A. (2008). A novel synthesis and antimicrobial activity of 1-[(Substituted-phenyl) sulfonyl]pyrrolidin-2-ones. Journal of Enzyme Inhibition and Medical Chemistry, 23(1), 82-86.