Vol. 34 (2024)
Artículos de Investigación

A handy analytical approximate solution for the magnetohydrodynamic flow of blood in a porous channel

Uriel Filobello-Nino
Universidad Veracruzana, Facultad de Instrumentación Electrónica
Hector Vazquez-Leal
Universidad Veracruzana
Jesus Huerta-Chua
Instituto Tecnológico Superior de Poza Rica
Rogelio Alejandro Callejas-Molina
Instituto Tecnológico de Celaya TNM
Ángel Trigos
Centro de Investigación en Micología Aplicada, Universidad Veracruzana
Alejandro Salinas-Castro
Centro de Investigación en Micología Aplicada, Universidad Veracruzana

Published 2024-04-30

How to Cite

Filobello-Nino, U., Vazquez-Leal, H., Huerta-Chua, J., Callejas-Molina, R. A., Trigos, Ángel, & Salinas-Castro, A. (2024). A handy analytical approximate solution for the magnetohydrodynamic flow of blood in a porous channel. Acta Universitaria, 34, 1–14. https://doi.org/10.15174/au.2024.3779

Abstract

This work presents a new version of the Picard method, known as the boundary values problems Picard method (BVPP), to obtain an analytical approximate solution for a highly complex nonlinear differential equation that models the magnetohydrodynamic flow of blood through a porous channel. The proposed method is versatile and can produce compact and easily evaluated analytical expressions that accurately capture the scientific phenomena being studied, making it ideal for practical applications. BVPP transforms a differential equation into an integral equation and utilizes an iterative algorithm like that of the basic Picard method. However, unlike the basic method, BVPP allows for the selection of an appropriate initial function and involves several adjustable parameters that can be optimized to obtain a precise analytical approximate solution with minimal effort. Overall, BVPP represents a significant advancement in the analysis of complex nonlinear differential equations, particularly in the field of biomedical engineering.

References

  1. Adamu, M., & Ogenyi, P. (2017). Parameterized homotopy perturbation method. Nonlinear Sci Lett A, 8(2), 240–243. https://www.researchgate.net/publication/312449676_Parameterized_homotopy_perturbation_method
  2. Adomian, G. (1988). A review of the decomposition method in applied mathematics. Journal of Mathematical Analysis and Applications, 135(2), 501–544. https://doi.org/10.1016/0022-247X(88)90170-9
  3. Assas, L. M. B. (2007). Approximate solutions for the generalized KdV–Burgers' equation by He's variational iteration method. Physica Scripta, 76(2), 161–164. https://doi.org/10.1088/0031-8949/76/2/008
  4. Babolian, E., & Biazar, J. (2002). On the order of convergence of Adomian method. Applied Mathematics and Computation, 130(2), 383–387. https://doi.org/10.1016/S0096-3003(01)00103-5
  5. Beléndez, A., Pascual, C., Álvarez, M. L., Méndez, D. I., Yebra, M. S., & Hernández, A. (2008). Higher order analytical approximate solutions to the nonlinear pendulum by He's homotopy method. Physica Scripta, 79(1), 015009. https://doi.org/10.1088/0031-8949/79/01/015009
  6. Boyce, W. E., & DiPrima, R. C. (2012). Elementary differential equations and boundary value problems. John Wiley & Sons.
  7. Diaz-Arango, G., Vázquez-Leal, H., Hernandez-Martinez, L., Sanz, M. T. S., and Sandoval-Hernandez, M. (2018). Homotopy path planning for terrestrial robots using spherical algorithm. IEEE Transactions on Automation Science and Engineering, 15(2), 567–585. https://doi.org/10.1109/TASE.2016.2638208
  8. El-Dib, Y. O. (2017). Multiple scales homotopy perturbation method for nonlinear oscillators. Non­linear Sci. Lett. A, 8(4), 352–364. https://www.researchgate.net/publication/318432572_Multiple_scales_homotopy_perturbation_method_for_nonlinear_oscillators
  9. El-Dib, Y. O., & Moatimid, G. M. (2018). On the coupling of the homotopy perturbation and Frobenius method for exact solutions of singular nonlinear differential equations. Nonlinear Sci. Lett. A, 9(3), 220–230. https://www.researchgate.net/publication/
  10. _On_the_coupling_of_the_homotopy_perturbation_and_Frobenius_method_for_exact_solutions_of_singular_nonlinear_differential_equations
  11. Elsgolts, L. (1977). Differential equations and the calculus of variations. Mir Publishers. https://ia600908.us.archive.org/2/items/ElsgoltsDifferentialEquationsAndTheCalculusOfVariations/Elsgolts-Differential-Equations-and-the-Calculus-of-Variations.pdf
  12. Evans, D. J., & Raslan, K. R. (2005). The Tanh function method for solving some important non­linear partial differential equations. International Journal of Computer Mathematics, 82(7), 897–905. https://doi.org/10.1080/00207160412331336026
  13. Filobello-Nino, U., Vazquez-Leal, H., Sarmiento-Reyes, A., Perez-Sesma, A., Hernandez-Martinez, L., Herrera-May, A., Jimenez-Fernandez, V. M., Marin-Hernandez, A., Pereyra-Diaz, D., & Diaz-Sanchez, A. (2013). The study of heat transfer phenomena using pm for approximate solution with Dirichlet and mixed boundary conditions. Applied and Computational Mathematics, 2(6), 143-148. https://doi.org/10.11648/j.acm.20130206.16
  14. Filobello-Nino, U., Vazquez-Leal, H., Perez-Sesma, A., Cervantes-Perez, J., Hernandez-Martinez, L., Herrera-May, A., Jimenez-Fernandez, V. M., Marin-Hernandez, A., Hoyos-Reyes, C., Diaz-Sanchez, A., & Huerta-Chua, J. (2016a). On a practical methodology for optimization of the trial function in order to solve BVP problems by using a modified version of Picard method. Applied Mathematics & Information Sciences, 10(4), 1355–1367. https://doi.org/10.18576/amis/100414
  15. Filobello-Nino, U., Vazquez-Leal, H., Rashidi, M. M., Sedighi, H. M., Perez-Sesma, A., Sandoval-Hernandez, M., Sarmiento-Reyes, A., Contreras-Hernandez, A. D., Pereyra-Diaz, D., Hoyos-Reyes, C., Jimenez-Fernandez, V. M., Huerta-Chua, J., Castro-Gonzalez, F., & Laguna-Camacho, J. R. (2016b). Laplace transform homotopy perturbation method for the approximation of variational problems. SpringerPlus, 5, 276. https://doi.org/10.1186/s40064-016-1755-y
  16. Filobello-Nino, U., Vazquez-Leal, H., Herrera-May, A., Ambrosio-Lazaro, R., Castaneda-Sheissa, R., Jimenez-Fernandez, V., Sandoval-Hernandez, M., & Contreras-Hernandez, A. (2020). A handy, accurate, invertible and integrable expression for Dawson’s function. Acta universitaria, 29, e2124. https://doi.org/10.15174/au.2019.2124
  17. Fukada, E., & Kaibara, M. (1980). Viscoelastic study of aggregation of red blood cells. Biorheology, 17(1-2), 177–182. https://doi.org/10.3233/bir-1980-171-219
  18. Fung, Y. C., & Sobin, S. S. (1969). Theory of sheet flow in lung alveoli. Journal of Applied Physiology, 26(4), 472–488. https://doi.org/10.1152/jappl.1969.26.4.472
  19. Fung, Y. C., & Tang, H. T. (1975). Solute distribution in the flow in a channel bounded by porous layers: a model of the lung. Journal of Applied Mechanics, 42(3), 531–535. https://doi.org/10.1115/1.3423636
  20. He, J. H. (2000). A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics, 35(1), 37–43. https://doi.org/10.1016/S0020-7462(98)00085-7
  21. He, J. H. (2006). Homotopy perturbation method for solving boundary value problems. Physics Letters A, 350(1-2), 87–88. https://doi.org/10.1016/j.physleta.2005.10.005
  22. He, J. H. (2008). Recent development of the homotopy perturbation method. Topological Methods in Nonlinear Analysis, 31(2), 205–209. https://apcz.umk.pl/TMNA/article/view/TMNA.2008.011
  23. He, J. H., & Wu, X. H. (2007). Variational iteration method: new development and applications. Computers & Mathematics with Applications, 54(7-8), 881–894. https://doi.org/10.1016/j.camwa.2006.12.083
  24. Holmes, M. (2013). Introduction to perturbation methods (2nd ed.). Springer. https://link.springer.com/book/10.1007/978-1-4614-5477-9
  25. Mahmoudi, J., Tolou, N., Khatami, I., Barari, A., & Ganji, D. D. (2008). Explicit solution of nonlinear ZK-BBM Wave equation using exp-function method. Journal of Applied Sciences, 8(2), 358–363. https://doi.org/10.3923/jas.2008.358.363
  26. Marinca, V., & Herisanu, N. (2011). Nonlinear dynamical systems in engineering. Springer-Verlag.
  27. https://doi.org/10.1007/978-3-642-22735-6
  28. Misra, J. C., & Shit, G. C. (2007). Role of slip velocity in blood flow through stenosed arteries: a non-Newtonian model. Journal of Mechanics in Medicine and Biology, 07(03), 337–353. https://doi.org/10.1142/S0219519407002303
  29. Misra, J. C., & Shit, G. C. (2009). Flow of a biomagnetic visco-elastic fluid in a channel with stretching walls. Journal of Applied Mechanics, 76(6), 061006. https://doi.org/10.1115/1.3130448
  30. Misra, J. C., Sinha, A., & Shit, G. C. (2011). A numerical model for the magnetohydrodynamic flow of blood in a porous channel. Journal of Mechanics in Medicine and Biology, 11(03), 547–562. https://doi.org/10.1142/S0219519410003794
  31. Misra, J. C., Shit, G. C., & Rath, H. J. (2008). Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: some applications to haemodynamics. Computers & Fluids, 37(1), 1-11. https://doi.org/10.1016/j.compfluid.2006.09.005
  32. Patel, T., Mehta, M. N., & Pradhan, V. H. (2012). The numerical solution of Burger’s equation arising into the irradiation of tumour tissue in biological diffusing system by homotopy analysis method. Asian Journal of Applied Sciences, 5(1), 60–66. https://doi.org/10.3923/ajaps.2012.60.66
  33. Sami, A., Noorani, M. S. M., & Hashim, I. (2008). Approximate analytical solutions of systems of PDEs by homotopy analysis method. Computers & Mathematics with Applications, 55(12), 2913-2923. https://doi.org/10.1016/j.camwa.2007.11.022
  34. Shijun, L. (1998). Homotopy analysis method: a new analytic method for nonlinear problems. Applied Mathematics and Mechanics, 19(10), 957–962. https://doi.org/10.1007/BF02457955
  35. Simmons, G. F. (2016). Differential equations with applications and historical notes (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315371825
  36. Tripathi, R., & Mishra, H. K. (2016). Homotopy perturbation method with Laplace transform (LT-HPM) for solving Lane–Emden type differential equations (LETDEs). SpringerPlus, 5(1), 1859. https://doi.org/10.1186/s40064-016-3487-4
  37. Vazquez-Leal, H. (2020). Exploring the novel continuum-cancellation Leal-method for the approximate solution of nonlinear differential equations. Discrete Dynamics in Nature and Society, 4967219. https://doi.org/10.1155/2020/4967219
  38. Vazquez-Leal, H., Sarmiento-Reyes, A., Khan, Y., Filobello-Nino, U., & Diaz-Sanchez, A. (2012). Rational biparameter homotopy perturbation method and Laplace-Padé coupled version. Journal of Applied Mathematics, 2012, 923975. https://doi.org/10.1155/2012/923975
  39. Vazquez-Leal, H., Sandoval-Hernandez, M., Castaneda-Sheissa, R., Filobello-Nino, U., & Sarmiento-Reyes, A. (2015). Modified Taylor solution of equation of oxygen diffusion in a spherical cell with Michaelis-Menten uptake kinetics. International Journal of Applied Mathematics Research, 4(2), 253-258. https://doi.org/10.14419/ijamr.v4i2.4273
  40. Xu, F. (2007). A generalized Soliton solution of the Konopelchenko-Dubrovsky equation using He’s Exp­function method. Zeitschrift für Naturforschung A, 62, 685–688. https://doi.org/10.1515/zna-2007-1202
  41. Zill, D. G. (2012). A first course in differential equations with modeling applications (10th ed.). Brooks/Cole-Cengage Learning.