Strategy in the supply of bottles of purified water with the approximation logarithm Vogel
Published 2024-05-08
How to Cite
Abstract
This research proposes a tool applicable to any productive sector that seeks to streamline the use and management of internal resources in an organization. The objective of this work is to minimize transport costs in the shipment of bottled purified drinking water in the face of variations in customer orders through the Vogel approximation logarithm. The method consisted of applying the following five points: 1) to collect internal and external information, 2) to analyze and purify information, 3) to simulate in software, 4) to interpret results, and 5) to propose solutions. Results determine that the minimum transportation cost for bottled water in presentations of 600 ml, 1000 ml, and 2000 ml were $150.6, $251.5, and $494 Mexican pesos, respectively; additionally, each product generates an ideal optimal route. It is concluded that the methodology allowed to generate relevant information for strategic decision making in the company based on current conditions.
References
- Ackora-Prah, J., Acheson, V., Owusu-Ansah, E., & Nkrumah, S. K. (2023). A proposed method for finding initial solutions to transportation problems. Pakistan Journal of Statistics & Operation Research, 19(1), 63–75. https://doi.org/10.18187/pjsor.v19i1.4196
- Ali Sajjadi, S., Alipour, V., Matlabi, M., & Biglari, H. (2015). Consumer perception and preference of drinking water sources. Electronic Physician, 7(1), 971-976. https://doi.org/10.19082/3228
- Amaliah, B., Fatichah, C., & Suryani, E. (2022). A supply selection method for better feasible solution of balanced transportation problem. Expert Systems with Applications, 203, 117399. https://doi.org/10.1016/j.eswa.2022.117399
- Aroniadi, C., & Beligiannis, G. N. (2023). Applying particle swarm optimization variations to solve the transportation problem effectively. Algorithms, 16(8), 372. https://doi.org/10.3390/a16080372
- Azad, S. M. A. K., & Hasan, M. K. (2019). An effective algorithm to solve cost minimising transportation problem. International Journal of Mathematics in Operational Research, 15(4), 434-445.https://ideas.repec.org/a/ids/ijmore/v15y2019i4p434-445.html
- Babu, A., Hoque, M. A., & Uddin, S. (2020). A heuristic for obtaining better initial feasible solution to the transportation problem. Opsearch, 57(1), 221–245. https://doi.org/10.1007/s12597-019-00429-5
- Barboza, D., González, C., & Montero, N. (2018). Propuesta de rutas inteligentes para los centros de procesamiento y mercadeo de alimentos (Cepromas) de las zonas de Guatuso y Upala, Costa Rica. E-Agronegocios, 4(1), 1-19. https://doi.org/10.18845/rea.v4i1.3638
- Beverage Marketing Corporation. (2023). Planning insights for beverage professionals. The Beverage Strategist. https://mailchi.mp/beveragemarketing/beveragestrategist
- Bisht, M., & Dangwal, R. (2022). Solving interval-valued transportation problem using a new ranking function for octagonal fuzzy numbers. International Journal of Modeling, Simulation, and Scientific Computing, 3(5). https://doi.org/10.1142/S1793962322500398
- Da Silva, I., Rodrigues, N., Cardoso, V., Correa, M. J., & Maia, M. A. (2018). Minimização dos custos de frete na distribuição de cimento por programação linear. Revista Eniac Pesquisa, 7(1), 97-108. https://dialnet.unirioja.es/servlet/articulo?codigo=6268344
- Diario Oficial de la Federación (DOF). (22 de diciembre de 2015). Norma Oficial Mexicana NOM-201-SSA1-2015, Productos y servicios. Agua y hielo para consumo humano, envasados y a granel. Especificaciones sanitarias. Secretaría de Salud (SS). https://dof.gob.mx/nota_detalle.php?codigo=5420977&fecha=22/12/2015#gsc.tab=0
- Ekanayake, E. M. D. B., & Ekanayake, E. M. U. S. B. (2022). Performance of the best solution for the prohibited route transportation problem by an improved Vogel’s approximation method. Indonesian Journal of Applied Research (IJAR), 3(3), 190–206. https://doi.org/10.30997/ijar.v3i3.241
- Girón, M. F., López, J. R., & Sornoza, K. J. (2021). Solution to the transportation problem practical application. Ecuadorian Science Journal, 5(4), 61-73. https://doi.org/10.46480/esj.5.4.170
- González, A. L., & García, G. A. (2015). Manual práctico de investigación de operaciones 1. Editorial Universidad del Norte. https://doi.org/10.2307/j.ctvdf0jz0
- Gonçalves, W. (2020). Problema de transporte em pequenos negócios: uma proposta a partir do Vogel’s approximation method. Iberoamerican Journal of Industrial Engineering, 12(24), 1–17. https://incubadora.periodicos.ufsc.br/index.php/IJIE/article/view/v12n2404
- Güldaği, L. S. (2019). Harekât ortaminda mühimmat lojistiğinin optimizasyonu. Atatürk Üniversitesi İktisadi Ve İdari Bilimler Dergisi, 33(2), 653-684. https://dergipark.org.tr/en/pub/atauniiibd/issue/44281/433358
- Guerrero, S. H. (2009). Programación lineal aplicada. Ecoe Ediciones.
- Hadson, W. K. (1996). Manual del ingeniero industrial IV. Mc Graw Hill.
- Hillier, F. S., & Lieberman, G. J. (2018). Introducción a la investigación de operaciones. Mc Graw Hill. https://frh.cvg.utn.edu.ar/pluginfile.php/54151/mod_resource/content/1/Introducci%C3%B3n%20a%20la%20Investigaci%C3%B3n%20de%20Operaciones%20%289na%20ed%29%20-%20Hillier%20%20Lieberman.pdf
- Hlatká, M., Bartuška, L., & Ližbetin, J. (2017). Application of the Vogel approximation method to reduce transport-logistics processes. MATEC Web of Conferences, 134, 1-8. http://dx.doi.org/10.1051/matecconf/201713400019
- Hemalatha, V., Mullai, M., Santhi, P. K., & Meenakshi, R. (2023). Solving neutrosophic fuzzy transportation problem of type-II. Neutrosophic Sets & Systems, 61(1), 523–533. https://digitalrepository.unm.edu/nss_journal/vol61/iss1/28
- Hossain, M., & Ahmed, M. (2020). A comparative study of initial basic feasible solution by a least cost mean method (LCMM) of transportation problem. American Journal of Operations Research, 10(4), 122-131. https://doi.org/10.4236/ajor.2020.104008
- Latunde, T., Richard, J. O., Esan, O. O., & Dare, D. D. (2021). Optimal value and post optimal solution in a transportation problem. Journal of Nonlinear Modeling & Analysis, 3(3), 335–348. https://doi.org/10.12150/jnma.2021.335
- Mauleón, M. (2006). Logística y costos. Ediciones Díaz de Santos.
- Montero-Contreras, D. P. (2016). Consumo de agua embotellada en la Ciudad de México desde una perspectiva institucional. Agua y Territorio / Agua y Paisaje, (7), 35–49. https://doi.org/10.17561/at.v0i7.2961
- Montenegro, L. H.., Aray, C. A.., Guillen, J. G., & Guerrero, Y. (2023). Una estrategia para mejorar el transporte urbano, en Portoviejo, capital de la provincia de Manabí utilizando el método Simplex. Revista Científica Arbitrada Multidisciplinaria Pentaciencias, 5(2), 381–388. https://editorialalema.org/index.php/pentaciencias/article/view/598
- Mordor Intelligence. (01 de 01 de 2022). Industry Research Report. MordorIntelligence.com. https://www.mordorintelligence.com/es/industry-reports/bottled-water-market
- Moreno, G. U., & Santana, D. S. (2022). La estadística en la investigación en modelos de transporte. Polo del Conocimiento, 7(12), 1266-1280. https://polodelconocimiento.com/ojs/index.php/es/article/view/5062
- Morote, Á. F. (2017). Factores que inciden en el consumo de agua doméstico. Estudio a partir de un análisis bibliométrico. Estudios Geográficos, 78(282), 257-281. https://doi.org/10.3989/estgeogr.201709
- Oliveira, M. A., Ferraz, M., Ferreira, R., & de Souza, M. D. (2022). Aplicação da pesquisa operacional para o problema de transporte. GeSec: Revista de Gestao e Secretariado, 13(3), 684–688. https://doi.org/10.7769/gesec.v13i3.1349
- Palacios, R. (2017). Investigación de operaciones I. Alfaomega. https://www.alphaeditorialcloud.com/reader/investigacion-de-operaciones-i?location=1
- Pečený, L., Meško, P., Kampf, R., & Gaš, J. (2020). Optimization in transport and logistic processes. Transportation Research Procedia (44), 15-22. https://doi.org/10.1016/j.trpro.2020.02.003
- Rao, S. S. (2009). Engineering optimization: theory and practice. JOHN WILEY & SONS, INC. https://onlinelibrary.wiley.com/doi/book/10.1002/9781119454816
- Render, B., Stair, R. M., & Hale, T. S. (2016). Métodos cuantitativos para los negocios. Pearson. https://pdfcoffee.com/render-2012-pdf-pdf-free.html
- Shalini. K., Noor J., & Polasi, S. (2022). Optimization Techniques in Transportation Problem. Journal of Pharmaceutical Negative Results, 13, 2609–2622. https://doi.org/10.47750/pnr.2022.13.S07.354
- Szkutnik-Rogoż, J., Ziółkowski, J., Małachowski, J., & Oszczypała, M. (2021). Mathematical programming and solution approaches for transportation optimisation in supply network. Energies, 14(21), 7010. https://doi.org/10.3390/en14217010
- Szromek, A. R. (2018). Application of optimization methods in planning of patients accommodation in the spa companies. Scientific Papers of Silesian University of Technology. Organization & Management / Zeszyty Naukowe Politechniki Slaskiej. Seria Organizacji i Zarzadzanie, 119, 289–300. https://bibliotekanauki.pl/articles/323241
- Taha, H. A. (2011). Investigación de operaciones. Pearson Educación. https://www.academia.edu/34227970/_Taha_Investigacion_De_Operaciones_9na_Edicion
- Tarafdar, A., Sarkar, S., Das, R. K., & Khatua, S. (2023). Power modeling for energy-efficient resource management in a cloud data center. Journal of Grid Computing, 21(10). https://doi.org/10.1007/s10723-023-09642-5
- Wali, M., Alhaz, M., & Kawser, R. (2016). Modified Vogel’s approximation method for obtaining a good primal solution of transportation problems. Annals of Pure and Applied Mathematics, 11(1), 63-71. http://www.researchmathsci.org/apamart/apam-v11n1-7.pdf
- Villamarín, J. M., Aguilar, G. J., Llamuca, J. L., & Villacrés, W. H. (2019). Modelo matemático de transporte para una empresa comercializadora de combustibles, usando programación lineal. Visionario Digital, 3(2), 64-81. https://doi.org/10.33262/visionariodigital.v3i2.394
- Ziółkowski, J., & Lęgas, A. (2019). Problem of modelling road transport. Journal of Konbin, 49(3), 159–193. https://doi.org/10.2478/jok-2019-0055