Microenvironment drives flower visitors’ activity in a population of the bishop’s cap cactus (Astrophytum myriostigma)
Published 2024-03-27
How to Cite
Abstract
Biotic and environmental conditions could affect the plant-flower visitor dynamics and, consequently, the fruit set in angiosperms. The aims of this study were: 1) to test the effect of microenvironment on activity of flower visitors in a population of Astrophytum myriostigma and 2) to describe the plant-flower visitor network’s structure. Data were recorded during two synchronous flowerings. The effect of microenvironment on flower visitors’ activity was tested through generalized linear models, and the interaction network structure was described. Frequency and duration of visits were mainly affected by atmospheric pressure and dew point. There were fewer flower visitors on plants located close to nurses and rocks. The interaction network topology tends to have a nested structure. Due to pollinators’ decline, these findings help understand the drivers limiting the flower visitors’ activity. The interactions between flower visitors and plants could be affected by atmospheric pressure alterations triggered by climate change.
References
- Abrol, D. P. (1988). Environmental factors influencing pollination activity of Apis mellifera on Brassica campestris. Journal of the Indian Institute of Science, 68(1-2), 49-52. https://journal.iisc.ac.in/index.php/iisc/article/view/1201/0
- Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117(8), 1227-1239. https://doi.org/10.1111/j.0030-1299.2008.16644.x
- Ankney, P. F. (1984). A note on barometric pressure and behavior in Drosophila pseudoobscura. Behavior Genetics, 14, 315-317. https://doi.org/10.1007/BF01065549
- Ball, P. (2003). Global greenhouse affects air pressure. Nature. https://doi.org/10.1038/news030317-6
- Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383-9387. https://doi.org/10.1073/pnas.1633576100
- Bascompte, J., Jordano, P., & Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312(5772), 431-433. https://doi.org/10.1126/science.1123412
- Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: from individuals to ecosystems. Blackwell Publishing Ltd.
- Beutelspacher, C. R., & Ramírez, M. (1973). Polinización en Stenocereus marginatus (D.C.) Briton & Rose. Cactáceas y Suculentas Mexicanas, 18, 80-83.
- Bishop, J., Jones, H. E., O’Sullivan, D. M., & Potts, S. G. (2016). Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba). Journal of Experimental Botany, 68(8), 2055-2063. https://doi.org/10.1093/jxb/erw430
- Blair, A. W., & Williamson, P. S. (2008). Effectiveness and importance of pollinators to the star cactus (Astrophytum asterias). The Southwestern Naturalist, 53(4), 423-430. https://doi.org/10.1894/JB-04.1
- Blüthgen, N., Fründ, J., Vázquez, D. P., & Menzel, F. (2008). What do interaction network metrics tell us about specialization and biological traits. Ecology, 89(12), 3387-3399. https://doi.org/10.1890/07-2121.1
- Blüthgen, N., Menzel, F., & Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology, 6(9). http://dx.doi.org/10.1186/1472-6785-6-9
- Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N. (2007). Specialization, constraints and conflicting interests in mutualistic networks. Current Biology, 17(7), 341-346. https://doi.org/10.1016/j.cub.2006.12.039
- Borror, D., & White, R. (1970). A field guide to the insects of North of Mexico. Houghton Mifflin Company.
- Bravo-Hollis, H., & Sánchez-Mejorada, H. (1986). Las cactáceas de México. Vol. II. UNAM.
- Brittain, C., Williams, N., Kremen, C., & Klein, A. M. (2013). Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings of the Royal Society B, 280, 20122767. https://doi.org/10.1098/rspb.2012.2767
- Cádiz-Véliz, A., Verdessi, F., & Carvallo, G. O. (2021). Shrub canopy matrix decreases reproductive output of a sheltered plant via pollinator exclusion. Basic and Applied Ecology, 56, 419-430. https://doi.org/10.1016/j.baae.2021.04.013
- Cano-Villegas, O., Muro-Pérez, G., Castañeda-Gaytán, G., & Sánchez-Salas, J. (2022). Tendencias locales de cambio climático y sus efectos en la Cuenca Nazas-Aguanaval: análisis de un periodo de 80 años (1940-2020). Revista Ciencia UANL, 25(113), 34-38. https://doi.org/10.29105/cienciauanl25.113-1
- Chadwick, L. E., & Williams, C. M. (1949). The effects of atmospheric pressure and composition on the flight of Drosophila. The Biological Bulletin, 97(2), 115-137. https://doi.org/10.2307/1538291
- Crespo, J. E., & Castelo, M. K. (2012). Barometric pressure influences host-orientation behavior in the larva of a dipteran ectoparasitoid. Journal of Insect Physiology, 58(12), 1562-1567. https://doi.org/10.1016/j.jinsphys.2012.09.010
- Cuevas, J., Rallo, L., & Rapoport, H. (1994). Initial fruit set at high temperature in olive, Olea europaea L. Journal of Horticultural Science, 69(4), 665-672. https://doi.org/10.1080/14620316.1994.11516498
- Dalsgaard, B., Martín-González, A. M., Olesen, J. M., Ollerton, J., Timmermann, A., Andersen, L. H., & Tossas, A. G. (2009). Plant-hummingbird interactions in the West Indies: floral specialization gradients associated with environment and hummingbird size. Oecologia, 159, 757-766. https://doi.org/10.1007/s00442-008-1255-z
- Dalsgaard, B., Trøjelsgaard, K., Martín-González, A. M., Nogués-Bravo, D., Ollerton, J., Petanidou, T., Sandel, B., Schleuning, M., Wang, Z., Rahbek, C., Sutherland, W. J., Svenning, J. C., & Olesen, J. M. (2013). Historical climate‐change influences modularity and nestedness of pollination networks. Ecography, 36, 1331-1340. https://doi.org/10.1111/j.1600-0587.2013.00201.x
- Dáttilo, W., Fagundes, R., Gurka, C. A. Q., Silva, M. S. A., Vieira, M. C. L., Izzo, T. J., Díaz-Castelazo, C., Del-Claro, K., & Rico-Gray, V. (2014). Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship. PLoS ONE, 9, e99838. https://doi.org/10.1371/journal.pone.0099838
- Dáttilo, W., Guimarães, P. R., & Izzo, T. J. (2013). Spatial structure of ant-plant mutualistic networks. Oikos, 122(11), 1643-1648. https://doi.org/10.1111/j.1600-0706.2013.00562.x
- De Almeida, A., & Mikich, S. B. (2018). Combining plant-frugivore networks for describing the structure of neotropical communities. Oikos, 127(2), 184-196. https://doi.org/10.1111/oik.04774
- Delph, L. F., Johannsson, M. H., & Stephenson, A. G. (1997). How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology, 78(6), 1632-1639. https://doi.org/10.1890/0012-9658(1997)078[1632:HEFAPP]2.0.CO;2
- Devoto, M., Medan, D., & Montaldo, N. H. (2005). Patterns of interaction between plants and pollinators along an environmental gradient. Oikos, 109(3), 461-472. https://doi.org/10.1111/j.0030-1299.2005.13712.x
- Díaz-Castelazo, C., Guimarães, P. R., Jordano, P., Thompson, J. N., Marquis, R. J., & Rico-Gray, V. (2010). Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology, 91(3), 793-801. https://doi.org/10.1890/08-1883.1
- Díaz-Castelazo, C., Martínez-Adriano, C. A., Dáttilo, W., & Rico-Gray, V. (2020). Relative contribution of ecological and biological attributes in the fine-grain structure of ant-plant networks. PeerJ, 8, e8314. https://doi.org/10.7717/peerj.8314
- Díaz-Castelazo, C., Sánchez-Galván, I. R., Guimarães, P. R., Galdini-Raimundo, R. L., & Rico-Gray, V. (2013). Long-term temporal variation in the organization of an ant-plant network. Annals of Botany, 111(6), 1285-1293. https://doi.org/10.1093/aob/mct071
- Dobson, A. J., & Barnett, A. G. (2008). An introduction to generalized linear models (Third Edition). Chapman & Hall/CRC.
- Dormann, C. F., & Gruber, B. (2009). Package ”Bipartite”: visualizing bipartite networks and calculating some ecological indices. R statistical software. `R group'. Available at https://CRAN.R-project.org/ package=bipartite
- Dormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, (2), 7-24. http://dx.doi.org/10.2174/1874213000902010007
- Dormann, C. F. (2011). How to be a specialist? quantifying specialization in pollination networks. Network Biology, 1(1), 1-20.
- Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12917-12922. https://doi.org/10.1073/pnas.192407699
- Dupont, Y. L., Padrón, B., Olesen, J. M., & Petanidou, T. (2009). Spatio-temporal variation in the structure of pollination networks. Oikos, 118(8), 1261-1269. https://doi.org/10.1111/j.1600-0706.2009.17594.x
- Espíndola, A., Pellissier, L., & Álvarez, N. (2011). Variation in the proportion of flower visitors of Arum maculatum along its distributional range in relation with community-based climatic niche analyses. Oikos, 120(5), 728-734. https://doi.org/10.1111/j.1600-0706.2010.18937.x
- Flores, J., & Jurado, E. (2003). Are nurse-protégé interactions more common among plants from arid environments? Journal of Vegetation Science, 14(6), 911-916. https://doi.org/10.1111/j.1654-1103.2003.tb02225.x
- Fox, J. (2016). Applied regression analysis and generalized linear models (Third Edition). SAGE Publications, Inc.
- García, E. (1981). Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana) (Tercera Edición). Instituto de Geología, Universidad Autónoma de México.
- Gillett, N. P., Zwiers, F. W., Weaver, A. J., & Stott, P. A. (2003). Detection of human influence on sea-level pressure. Nature, 422, 292-294. https://doi.org/10.1038/nature01487
- Gillot, C. (2005). Entomology (Third Edition). Springer.
- González-Elizondo, M. S., González-Elizondo, M., & Márquez-Linares, M. A. (2007). Vegetación y ecorregiones de Durango. Plaza y Valdés, S.A. de C.V.
- Grüter, C., & Ratnieks, F. L. W. (2011). Flower constancy in insect pollinators: Adaptive foraging behavior or cognitive limitation?. Communicative & Integrative Biology, 4(6), 633-636. https://doi.org/10.4161/cib.16972
- Guimarães, P. R., & Guimarães, P. (2006). Improving the analyses of nestedness for large sets of matrices. Environmental Modelling & Software, 21(10), 1512-1513. https://doi.org/10.1016/j.envsoft.2006.04.002
- Harder, L. D. (1990). Pollen removal by bumble bees and its implications for pollen dispersal. Ecology, 71(3), 1110-1125. https://doi.org/10.2307/1937379
- Harder, L. D., & Johnson, S. D. (2005). Adaptive plasticity of floral display size in animal-pollinated plants. Proceedings of the Royal Society B-Biological Sciences, 272, 2651-2657. https://doi.org/10.1098/rspb.2005.3268
- Haufe, W. O. (1954). The effects of atmospheric pressure on the flight responses of Aëdes aegypti (L.). Bulletin of Entomological Research, 45, 507-526. https://doi.org/10.1017/S000748530002959X
- Hedhly, A., Hormaza, J. I., & Herrero, M. (2003). The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant, Cell & Environment, 26(10), 1673-1680. https://doi.org/10.1046/j.1365-3040.2003.01085.x
- Hedhly, A., Hormaza, J. I., & Herrero, M. (2004). Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). American Journal of Botany, 91(4), 558-564. https://doi.org/10.3732/ajb.91.4.558
- Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions?. Ecology Letters, 12, 184-195. https://doi.org/10.1111/j.1461-0248.2008.01269.x
- Hernández-Yáñez, H., Lara-Rodríguez, N., Díaz-Castelazo, C., Dáttilo, W., & Rico-Gray, V. (2013). Understanding the complex structure of a plant-floral visitor network from different perspectives in Coastal Veracruz, México. Sociobiology, 60(3), 329-336. https://doi.org/10.13102/sociobiology.v60i3.329-336
- Herrera, C. M. (1995). Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology, 76(5), 1516-1524. https://doi.org/10.2307/1938153
- Herrera, C. M. (1996). Floral traits and plant adaptation to insect pollinators: a devil’s advocate approach. In D. G. Lloyd & S. C. H. Barrett (eds.), Floral Biology: Studies on floral evolution in animal-pollinated plants (pp. 65-87). Chapman and Hall.
- Huerta-Martínez, F. M. (1995). Algunos aspectos sobre la polinización de Opuntia streptacantha Lemaire. Cactáceas y Suculentas Mexicanas, 40, 68-72.
- Ibarra-Cerdeña, C. N., Íñiguez-Dávalos, L. I., & Sánchez-Cordero, V. (2005). Pollination ecology of Stenocereus queretaroensis (Cactaceae), a chiropterophilous columnar cactus, in a tropical dry forest of Mexico. American Journal of Botany, 92(3), 503-509. https://doi.org/10.3732/ajb.92.3.503
- Instituto Nacional de Estadística y Geografía (INEGI). (2000). Carta de Climas del Estado de Durango, 1:100 000, Gómez Palacio, Dgo., México.
- Inoue, T., & Kato, M. (1992). Inter and intraspecific morphological variation in bumblebee species, and competition in flower utilization. In M. D Hunter, T. Ohgushi, & P. W. Price (eds.), Effects of resource distribution on animal-plant interactions (pp. 393-427). Academic Press.
- Johnson, R. A. (1992). Pollination and reproductive ecology of Acuña cactus, Echinomastus erectrocentrus var. acunensis (Cactaceae). International Journal of Plant Sciences, 153(3), 400-408. https://doi.org/10.1086/297044
- Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist, 129(5), 657-677. https://doi.org/10.1086/284665
- Jou, Y. J., Huang, C. C. L., & Cho, H. J. (2014). A VIF-based optimization model to alleviate collinearity problems in multiple linear regression. Computational Statistics, 29, 1515-1541. https://doi.org/10.1007/s00180-014-0504-3
- King, C., Ballantyne, G., & Willmer, P. G. (2013). Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution, 4(9), 811-818. https://doi.org/10.1111/2041-210X.12074
- Kuppler, J., & Kotowska, M. M. (2021). A meta-analysis of responses in floral traits and flower–visitor interactions to water deficit. Global Change Biology, 27(13), 3095-3108. https://doi.org/10.1111/gcb.15621
- Ladd, P. G., Yates, C. J., Dillon, R., & Palmer, R. (2019). Pollination ecology of Tetratheca species from isolated, arid habitats (Banded Iron Formations) in Western Australia. Australian Journal of Botany, 67(3), 248-255. https://doi.org/10.1071/BT18249
- Lanier, G. N., & Burns, B. W. (1978). Barometric flux. Effects on the responsiveness of bark beetles aggregation attractants. Journal of Chemical Ecology, 4, 139-147. https://doi.org/10.1007/BF00988050
- Lau, J. A., & Galloway, L. F. (2004). Effects of low-efficiency pollinators on plant fitness and floral trait evolution in Campanula americana (Campanulaceae). Oecologia, 141, 577-583. https://doi.org/10.1007/s00442-004-1677-1
- Leskey, T. C., & Prokopy, R. J. (2003). Influence of barometric pressure on odor discrimination and oviposition by adult plum curculios (Coleoptera: Curculionidae). European Journal of Entomology, 100(4), 517–520. https://doi.org/10.14411/eje.2003.079
- Li, J., & Margolies, D. C. (1994). Barometric pressure influences initiation of aerial dispersal in the twospotted spider mite. Journal of the Kansas Entomological Society, 67(4), 386-393. http://www.jstor.org/stable/25085545
- Marchand, D., & McNeil, J. N. (2000). Effects of wind speed and atmospheric pressure on mate searching behavior in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Journal of Insect Behavior, 13, 187-199. https://doi.org/10.1023/A:1007732113390
- Martín-González, A. M., Dalsgaard, B., Ollerton, J., Timmermann, A., Olesen, J. M., Andersen, L., & Tossas, A. G. (2009). Effects of climate on pollination networks in the West Indies. Journal of Tropical Ecology, 25(5), 493-506. https://doi.org/10.1017/S0266467409990034
- Martínez-Adriano, C. A., Díaz-Castelazo, C., & Aguirre-Jaimes, A. (2018). Flower-mediated plant-butterfly interactions in an heterogeneous tropical coastal ecosystem. PeerJ, 6, e5493. https://doi.org/10.7717/peerj.5493
- Martínez-Adriano, C. A., Romero-Méndez, U., Flores, J., Jurado, E., & Estrada-Castillón, E. (2015). Floral visitors of Astrophytum myriostigma in La Sierra El Sarnoso, Durango, México. The Southwestern Naturalist, 60(2-3), 158-165. https://doi.org/10.1894/FMO-12.1
- Martínez-Falcón, A. P., Martínez-Adriano, C. A., & Dáttilo, W. (2019). Redes complejas como herramientas para estudiar la diversidad de las interacciones ecológicas. In C. E. Moreno (Ed.), La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio (pp. 265-283). Universidad Autónoma del Estado de Hidalgo/Libermex.
- McCall, C., & Primack, R. B. (1992). Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. American Journal of Botany, 79(4), 434-442. https://doi.org/10.1002/j.1537-2197.1992.tb14571.x
- McDonald, C. J., & McPherson, G. R. (2005). Pollination of pima pineapple cactus (Coryphantha scheeri var robustispina): Does pollen flow limit abundance of this endangered species?. USDA Forest Service Proceedings RMRS-P-36, 529-532.
- https://www.fs.usda.gov/rm/pubs/rmrs_p036/rmrs_p036_529_532.pdf
- McIntosh, M. E. (2005). Pollination of two species of Ferocactus: interactions between cactus-specialist bees and their host plants. Functional Ecology, 19(4), 727-734. https://doi.org/10.1111/j.1365-2435.2005.00990.x
- Murillo, M. (1981). Aspectos de la polinización por insectos en cinco géneros de cactáceas de la zona árida del estado de Querétaro. Folia Entomológica Mexicana, 48, 35-36.
- Muro-Pérez, G., Romero-Méndez, U., Flores-Rivas, J. D., & Sánchez-Salas, J. (2009). Algunos aspectos sobre el nodrizaje en Astrophytum myriostigma Lem. (1839) (Cactae: Cactaceae), en la Sierra El Sarnoso, Durango, México. Boletín Nakari, 20, 43-48.
- Naimi, B. (2015). usdm: uncertainty analysis for species distribution models, R package version 1. https://CRAN.R-project.org/package=usdm
- Olesen, J. M., & Jordano, P. (2002). Geographic patterns in plant-pollinator mutualistic networks. Ecology, 83(9), 2416-2424. https://doi.org/10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2
- Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19891-19896. https://doi.org/10.1073/pnas.0706375104
- Quinn, G. G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge University Press.
- R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/
- Radmacher, S., & Strohm, E. (2011). Effects of constant and fluctuating temperatures on the development of the solitary bee Osmia bicornis (Hymenoptera: Megachilidae). Apidologie, 42, 711-720. https://doi.org/10.1007/s13592-011-0078-9
- Ramos-Robles, M., Andresen, E., & Díaz-Castelazo, C. (2016). Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability. PeerJ, 4, e2048. https://doi.org/10.7717/peerj.2048
- Ren, H., Yang, L., & Liu, N. (2008). Nurse plant theory and its application in ecological restoration in lower subtropics of China. Progress in Natural Science, 18(2), 137-142. https://doi.org/10.1016/j.pnsc.2007.07.008
- Rico-Gray, V., Díaz-Castelazo, C., Ramírez-Hernández, A., Guimarães, P. R., & Holland, J. N. (2012). Abiotic factors shape temporal variation in the structure of an ant–plant network. Arthropod-Plant Interactions, 6, 289-295. https://doi.org/10.1007/s11829-011-9170-3
- Robinson, K. M., Hauzy, C., Loeuille, N., & Albrectsen, B. R. (2015). Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks. Ecology and Evolution, 5(14), 2898-2915. https://doi.org/10.1002/ece3.1559
- Roitberg, B. D., Sircom, J., Roitberg, C. A., van Alphen, J. J. M., & Mangel, M. (1993). Life expectancy and reproduction. Nature, 364, 108. https://doi.org/10.1038/364108a0
- Romero-Méndez, U., López-Corrujedo, H., García-de la Peña, C., & Estrada-Rodríguez, J. L. (2013). Variación ecomorfológica de Astrophytum myriostigma (Caryophylalles: Cactaceae) en una población de la sierra El Sarnoso, Durango, México. Revista Chilena de Historia Natural, 86(3), 357-364. http://dx.doi.org/10.4067/S0716-078X2013000300012
- Rzedowski, J. (1962). Contribuciones a la fitogeografía florística e histórica de México. I. Algunas consideraciones acerca del elemento endémico en la flora mexicana. Botanical Sciences, (27), 52-65. http://dx.doi.org/10.17129/botsci.1077
- Rzedowski, J. (1986). La vegetación de México (Tercera Edición). LIMUSA.
- Sánchez-Lafuente, A. M. (2002). Floral variation in the generalist perennial herb Paeonia broteroi (Paeoniaceae): differences between regions with different pollinators and herbivores. American Journal of Botany, 89(8), 1260-1269. https://doi.org/10.3732/ajb.89.8.1260
- Sánchez-Reyes, U. J., Niño-Maldonado, S., Barrientos-Lozano, L., & Sandoval-Becerra, F. (2016). Influencia del clima en la distribución de Chrysomelidae (Coleoptera) en el Cañón de la Peregrina, Tamaulipas, México. Entomología Mexicana, 3, 467-473.
- Sánchez-Salas, J., Muro-Pérez, G., & Romero-Méndez, U. (2004). Sierra El Sarnoso: cactáceas, guía de campo. Escuela Superior de Biología, Universidad Juárez del Estado de Durango.
- Sandoval-Becerra, F. M., Niño-Maldonado, S., Sánchez-Reyes, U. J., Horta-Vega, J. V., Venegas-Barrera, C. S., & Martínez-Sánchez, I. (2017). Respuesta de la comunidad de Chrysomelidae (Coleoptera) a la variación microclimática en un fragmento de bosque de encino del noreste de México. Entomología Mexicana, 4, 421-427.
- Scaven, V. L., & Rafferty, N. E. (2013). Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Current Zoology, 59(3), 418-426. https://doi.org/10.1093/czoolo/59.3.418
- Diario Oficial de la Federación (DOF). (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-especies nativas de México de flora y fauna silvestres-categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Secretaría del Medio Ambiente y Recursos Naturales (Semarnat). https://dof.gob.mx/nota_detalle_popup.php?codigo=5173091
- Settele, J., Bishop, J., & Potts, S. G. (2016). Climate change impacts on pollination. Nature Plants, 2, 16092. https://doi.org/10.1038/nplants.2016.92
- Slavković, F., Greenberg, A., Sadowsky, A., Zemach, H., Ish-Shalom, M., Kamenetsky, R., & Cohen, Y. (2016). Effects of applying variable temperature conditions around inflorescences on fertilization and fruit set in date palms. Scientia Horticulturae, 202, 83-90. https://doi.org/10.1016/j.scienta.2016.02.030
- Steinberg, S., Dicke, M., Vet, L. E. M., & Wanningen, R. (1992). Response of the braconid parasitoid Cotesia (= Apanteles) glomerata to volatile infochemicals: effects of bioassay set‐up, parasitoid age and experience and barometric flux. Entomologia Experimentalis et Applicata, 63(2), 163-175. https://doi.org/10.1111/j.1570-7458.1992.tb01571.x
- Strong, A. W., & Williamson, P. S. (2007). Breeding system of Astrophytum asterias: an endangered cactus. The Southwestern Naturalist, 52(3), 241-346. https://doi.org/10.1894/0038-4909(2007)52[341:BSOAAA]2.0.CO;2
- Tangmitcharoen, S., & Owens, J. N. (1997). Floral biology, pollination, pistil receptivity, and pollen tube growth of teak (Tectona grandis Linn f.). Annals of Botany, 79(3), 227-241. https://doi.org/10.1006/anbo.1996.0317
- Tasen, W., Ogata, K., Miyajima, I., & Pianhanuruk, P. (2010). The effect of microclimate factors to floral traits on flowering season in teak (Tectona grandis) seed plantations, Thailand. Advances in Bioresearch, 1(1), 137-143.
- Tasen, W., Jaitrong, W., Sittichaya, W., & Ogata, K. (2014). Relationships among insect pollinators, micro-environmental factors and fruit settings of teak (Tectona grandis LF) in seed orchards in Thailand. Thai Journal of Forestry, 33, 96-108.
- Tenorio-Escandón, P., Ramírez-Hernández, A., Flores, J., Juan-Vicedo, J., & Martínez-Falcón, A. P. (2022) A systematic review on Opuntia (Cactaceae; Opuntioideae) flower-visiting insects in the world with emphasis on Mexico: implications for biodiversity conservation. Plants, 11(1), 131. https://doi.org/10.3390/plants11010131
- Totland, Ø. (2001). Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology, 82(8), 2233-2244. https://doi.org/10.1890/0012-9658(2001)082[2233:EDPLAS]2.0.CO;2
- US Department of Transportation and Federal Aviation Administration. (2008). Instrument flying book. United States Department of Transportation, Federal Aviation Administration, Airman Standards Branch.
- Vanbergen, A. J. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251-259. https://doi.org/10.1890/120126
- Vázquez, D. P., Melian, C. J., Williams, N. M., Blüthgen, N., Krasnov, B. R., & Poulin, R. (2007), Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116(7), 1120-1127. https://doi.org/10.1111/j.0030-1299.2007.15828.x
- Wang, X., Liu, H., Li, X., Song, Y., Chen, L., & Jin, L. (2009). Correlations between environmental factors and wild bee behavior on alfalfa (Medicago sativa) in Northwestern China. Environmental Entomology, 38(5), 1480-1484. https://doi.org/10.1603/022.038.0516
- Welti, E. A. R., & Joern, A. (2015). Structure of trophic and mutualistic networks across broad environmental gradients. Ecology and Evolution, 5(2), 326-334. https://doi.org/10.1002/ece3.1371
- Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer.
- Withgott, J. (2000). Botanical nursing: from deserts to shorelines, nurse effects are receiving renewed attention. BioScience, 50(6), 479-484. https://doi.org/10.1641/0006-3568(2000)050[0479:BN]2.0.CO;2