Published 2024-07-24
How to Cite
Abstract
Lipases are enzymes attractive for their use in enzymatic biotechnology, mainly those produced by extremophiles. Recently, the isolation of thermophilic bacteria Geobacillus spp. from the geothermal waters of the crater lake of the “El Chichón” volcano in Mexico was reported. In this work, the lipolytic activity of the G. stearothermophilus CHI1 strain was characterized and optimized. This strain was able to produce enzymes with maximum lipolytic activity at 60 °C and 80°C, with pH values of 5, 9, and 11; showed tolerance of solvents; was able to perform catalysis independently of metal ions; and showed greater affinity towards medium-chain substrates. Results of biochemical characterization and optimization suggest the presence of more than one type of lipolytic activity in Geobacillus stearothermophilus CHI1. All these characteristics make these enzymes attractive in biotechnological processes at high temperatures and alkaline pH (e.g., detergent additives), as well as in the understanding of their biological utility in Geobacillus.
References
- Adetunji, A. I., & Olaniran, A. O. (2021). Production strategies and biotechnological relevance of microbial lipases: a review. Brazilian Journal Microbiology, 52, 1257–1269. https://doi.org/10.1007/s42770-021-00503-5
- Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: tools for biotechnological processes. Biomolecules, 4(1), 117–139. https://doi.org/10.3390/biom4010117
- Barik, A., Sen, S. K., Rajhans, G., & Raut, S. (2022). Purification and optimization of extracellular lipase from a novel strain Kocuria flava Y4. International Journal of Analytical Chemistry, 2022, 1–10. https://doi.org/10.1155/2022/6403090
- Behera, A. R., Veluppal, A., & Dutta, K. (2019). Optimization of physical parameters for enhanced production of lipase from Staphylococcus hominins using response surface methodology. Environmental Science and Pollution Research, 26, 34277–34284. https://doi.org/10.1007/s11356-019-04304-0
- Berekaa, M. M., Zaghloul, T. I., Abdel-Fattah, Y. R., Saeed, H. M., & Sifour, M. (2009). Production of a novel glycerol-inducible lipase from thermophilic Geobacillus stearothermophilus strain-5. World Journal of Microbiology and Biotechnology, 25, 287–294. https://doi.org/10.1007/s11274-008-9891-3
- Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G., & Oliart, R. (2005). Screening, purification, and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology, 37, 648–654. https://doi.org/10.1016/j.enzmictec.2005.06.003
- Christopher, L. P., Zambare, V. P., Zambare, A., Kumar, H., & Malek, L. (2015). A thermo-alkaline lipase from a new thermophile Geobacillus thermodenitrificans AV-5 with potential application in biodiesel production. Journal of Chemical Technology & Biotechnology, 90, 2007–2016. https://doi.org/10.1002/jctb.4678
- Dako, E., Bernier, A. M., Dadie, A. T., & Jankowski, C. K. (2012). The problems associated with enzyme purification. In D. Ekinci (ed.), Chemical Biology (pp. 19-40). Intech. https://doi.org/10.5772/33307
- Eggert, T., van Pouderoyen, G., Dijkstra, B. W., & Jaeger, K. E. (2001). Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Letters, 502, 89–92. https://doi.org/10.1016/S0014-5793(01)02665-5
- Eggert, T., Brockmeier, U., Droge, M. J., Quax, W. J., & Jaeger, K. E. (2003). Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiology Letters, 225, 319–324. https://doi.org/10.1016/S0378-1097(03)00536-6
- Ekinci, A. P., Dinçer, B., Baltaş, N., & Adıgüzel, A. (2016). Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22. Journal of Enzyme Inhibition and Medical Chemistry, 31, 325–331. https://doi.org/10.3109/14756366.2015.1024677
- Gamboa-Melendez, H., Larroude, M., Park, Y. K., Trebul, P., Nicaud, J. M., & Ledesma-Amaro, R. (2018). Synthetic biology to improve the production of lipases and esterases (Review). Methods in Molecular Biology, 1835, 229-242. https://doi.org/10.1007/978-1-4939-8672-9_13
- Godoy, C. A., Pardo-Tamayo, J. S., & Barbosa, O. (2022). Microbial lipases and their potential in the production of pharmaceutical building blocks. International Journal of Molecular Science, 23, 9933.
- https://doi.org/10.3390/ijms23179933
- Lajis, A. F. B. (2018). Realm of thermoalkaline lipases in bioprocess commodities. Journal of Lipids, 2018, 1–22. https://doi.org/10.1155/2018/5659683
- Leow, T. C., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2007). A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles, 11, 527–535. https://doi.org/10.1007/s00792-007-0069-y
- Li, H., & Zhang, X. (2005). Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expression and Purification, 42(1), 153–159. https://doi.org/10.1016/j.pep.2005.03.011
- Lim, S. Y., Steiner, J. M., & Cridge, H. (2022). Lipases: It's not just pancreatic lipase!. American Journal of Veterinary Research, 83(8), 1-8. https://doi.org/10.2460/ajvr.22.03.0048
- Mahfoudhi, A., Benmabrouk, S., Fendri, A., & Sayari, A. (2022). Fungal lipases as biocatalysts: a promising platform in several industrial biotechnology applications. Biotechnology and Bioengineering, 119(12), 3370-3392. https://doi.org/10.1002/bit.28245
- Oliart-Ros, R. M., Badillo-Zeferino, G. L., Quintana-Castro, R., Ruíz-López, I. I., Alexander-Aguilera, A., Domínguez-Chávez, J. G., Khan, A. A., Nguyen, D. D., Nadda, A. K., & Sánchez-Otero, M. G. (2021). Production and characterization of cross-linked aggregates of Geobacillus thermoleovorans CCR11 thermoalkaliphilic recombinant lipase. Molecules, 26(24), 7569. https://doi.org/10.3390/molecules26247569
- Ovando-Chacon, S. L., Tacias-Pascacio, V. G., Ovando-Chacon, G. E., Rosales-Quintero, A., Rodriguez-Leon, A., Ruiz-Valdiviezo, V. M., & Servin-Martinez, A. (2020). Characterization of thermophilic microorganisms in the geothermal water flow of El Chichón volcano crater lake. Water, 12, 2172. https://doi.org/10.3390/w12082172
- Pohanka, M. (2019). Biosensors and bioassays based on lipases, principles and applications, a review. Molecules, 24(3), 616. https://doi.org/10.3390/molecules24030616
- Quintana-Castro, R., Díaz, P., Valerio-Alfaro, G., García, H. S., & Oliart-Ros, R. (2009). Gene cloning, expression, and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase. Molecular Biotechnology, 42, 75–83. https://doi.org/10.1007/s12033-008-9136-6
- Rmili, F., Hadrich, B., Chamkha, M., Sayari, A., & Fendri, A. (2022). Optimization of organic solvent-tolerant lipase production by Staphylococcus capitis SH6. Immobilization for biodiesel production and biodegradation of waste greases. Preparative Biochemistry & Biotechnology, 52, 108–122. https://doi.org/10.1080/10826068.2021.1920034
- Salihu, A., & Alam, Z. (2015). Solvent tolerant lipases: a review. Process Biochemistry, 50(1), 86–96. https://doi.org/10.1016/j.procbio.2014.10.019
- Sharma, S., & Kanwar, S. S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal, 2014, 625258. https://doi.org/10.1155/2014/625258
- Sifour, M., Saeed, H. M., Zaghloul, T. I., Berekaa, M. M., & Abdel-Fatt, Y. R. (2010). Purification and properties of a lipase from thermophilic Geobacillus stearothermophilus Strain-5. International Journal of Biological Chemistry, 4(4), 203–212. https://doi.org/10.3923/ijbc.2010.203.212
- Soliman, N. A., Knoll, M., Abdel-Fattah, Y. R., Schmid, R. D., & Lange, S. (2007). Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem, 42(7), 1090–1100. https://doi.org/10.1016/j.procbio.2007.05.005
- Vivek, K., Sandhia, G. S., & Subramaniyan, S. (2022). Extremophilic lipases for industrial applications: a general review. Biotechnology Advances, 60, 108002. https://doi.org/10.1016/j.biotechadv.2022.108002
- Vorderwülbecke, T., Kieslich, K., & Erdmann, H. (1992). Comparison of lipases by different assays. Enzyme and Microbial Technology, 14(8), 631–639. https://doi.org/10.1016/0141-0229(92)90038-P