Development of a quality control protocol for the Brainlab Exactrac imaging system
Published 2024-10-30
How to Cite
Abstract
The objective was to implement tests for the quality control of the Exactrac system, which consider the verification and correction of the positioning through the calibration of the isocenter, allowing Exactrac to identify the geometric alignment of the accelerator with respect to the infrared cameras; in addition, using a phantom with spheres inserted will enable the analysis of the accuracy to detect them. The task group TG 75 recommends to measure beam quality and imaging dose for the kilovoltage (KV) planar imaging system. The results of the isocenter deviation and X-ray calibration were ≤1.0 mm. The difference in the kilovoltage of the X-ray tubes was 2.5%. The dose for the upper skull technique was 0.326 mGy, in accordance with the dose reported in AAPM TG 75, and 0.335 mGy for skull/cervical spine protocols.
References
- Brainlab AG Germany. (2019). Manual del Usuario, Volumen 1/2, Edición 1.2. Exactrac Versión 6.5.
- Da Silva, V., Reiner, M., Huang, L., Reitz, D., Straub, K., Corradini, S., Niyazi, M., Belka, C., Kurz, C., Landry, G., & Freislederer, P. (2022). Exactrac Dynamic workflow evaluation: combined surface optical/termal imaging and X-ray positioning. Journal of Applied Clinical Medical Physics, 23(10), 1-16. https://www.doi.org/10.1002/acm2.13754.
- Huang, Y., Zhao, B., Kim, J., Wen, N., Chetty, I. J., & Siddiqui, S. (2018). Targeting accuracy at couch kick for a frameless image guided radiosurgery system. Journal of Radiosurgery and SBRT, 5(2), 123-129. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893453
- Iftimia, I., & Halvrsen, P. H. (2017). Development of clinically relevant QA procedures for the Brainlab Exactrac imaging system. Journal of Applied Clinical Medical Physics, 19(3), 108-113. http://doi.org/10.1002/acm2.12301
- Klein, E. E., Hanley, J., Bayouth, J., Yin, F. F., Simon, W., Dresser, S., Serago, C., Aguirre, A., Ma, L., Arjomandy, B., Liu, C., Sandin, C., & Holmes, T. (2009). Task Group 142 report: quality assurance of medical accelerators. Medical Physics, 36(9), 4197-4212. http://dx.doi.org/10.1118/1.3190392
- Luh, J., Alburqueque, K., Cheng, C., Ermonian, R., Nabavizadeh, N., Parsai, H., Roeske, J., Weis, S., Wynn, R., Yu, Y., Rosenthal, S., & Hartford, A., (2020). ACR-ASTRO Practice parameter for image-guided radiation therapy (IGRT). American Journal of Clinical Oncology, 43(7), 459-468. https://doi.org/10.1097/COC.0000000000000697
- Meilij, R., Aon, E., & Valente, M. (2022). Metodología para definir esquemas de irradiación a partir de espacios de fase para simular planificación en radioterapia. Anales AFA, 33(2), 48-53. https://doi.org/10.31527/analesafa.2022.33.2.48.
- Murphy, M. J., Balter, J., Balter, S., Bencomo, J. A., Das, I. J., Jiang, S. B., Ma. C., Olivera, G. H., Rodebaugh, R. F., Ruchala, K. J., Shirato, J., & Yin, F. F. (2007). The management of imaging dose during image-guided radiotherapy: report of the AAPM Task Group 75. Medical Physics, 34(10), 4041-4063. http://dx.doi.org/10.1118/1.2775667
- Sociedad Española de Física Medica (SEFM). (2013). Recomendaciones para el control de calidad de equipos y técnicas de radioterapia guiada por la imagen (IGRT). http://socios.sefm.es/psefm/IGRT-SEFM.pdf
- Stanley, D. N., Papanikolaou, N., & Gutierrez, A. N. (2014). Development of image quality assurance measures of the Exactrac localization system using commercially available image evaluation software and hardware for image-guided radiotherapy. Journal of Applied Clinical Medical Physics, 15(6), 81-91. https://doi.org/10.1120/jacmp.v15i6.4877
- Wang, L. T., Solberg, T. D., Medin, P. M., & Boone, R. (2001). Infrared patient positioning for stereotactic radiosurgery of extracranial tumor. Computers in Biology and Medicine, 31(2), 101-111. https://doi.org/10.1016/s0010-4825(00)00026-3