Vol. 35 (2025): Volumen 35
Artículos de Investigación

A Copolymers based sensor to detect and pinpoint milk leaks in pipelines of lacteous process factories

Felipe Samuel Hernandez Rodarte
technologic National of México
Alfredo Márquez Lucero
Centro de Investigación en Materiales Avanzados
Miguel Alonso Orozco Alvarado
Centro de Investigación en Materiales Avanzados

Published 2025-07-02

How to Cite

Hernandez Rodarte, F. S., Márquez Lucero, A., & Orozco Alvarado, M. A. (2025). A Copolymers based sensor to detect and pinpoint milk leaks in pipelines of lacteous process factories. Acta Universitaria, 35, 1–11. https://doi.org/10.15174/au.2025.4255

Abstract

Copolymer poly(n-butyl acrylate) and poly(acrylic acid), 70% and 30%, respectively, were prepared by radical emulsion polymerization. The copolymer obtained was used in a coextrusion process to make a sensor cable prototype formed of nichrome wire as core and copper wire wrapped spirally (windings 1.2 cm/cycle). A sensing system circuit was designed for milk leak detection. The polymer structure improves the processing properties for distributed shaped wire sensors and decreases sensitivity to the environmental humidity, avoiding false alarms. In simulated tests, the system detects the leak localization with high accuracy (error levels as +/- 1%).

References

  1. Cardell-Oliver, R., Scott, V., Chapman, T., Morgan, J., & Simpson, A. (2015). Designing sensor networks for leak detection in water pipeline systems. IEEE Tenth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore. https://doi.org/10.1109/issnip.2015.7106909
  2. Casillas, M. V., Garza-Castañón, L. E., & Puig, V. (2015). Sensor placement for leak location in water distribution networks using the leak signature space. IFAC-PapersOnLine, 48(21), 214-219. https://doi.org/10.1016/j.ifacol.2015.09.530
  3. Cheng, B., Yuan, L., Zhu, W., Song, Y., & Xiao, H. (2017). A coaxial cable magnetic field sensor based on ferrofluid filled Fabry-Perot interferometer structure. Sensors and Actuators A: Physical, 257, 194-197. https://doi.org/10.1016/j.sna.2017.02.024
  4. Colombani, O., Ruppel, M., Schubert, F., Zettl, H., Pergushov, D. V., & Müller, A. H. E. (2007). Synthesis of Poly(n-butyl acrylate)-block-poly(acrylic acid) diblock copolymers by ATRP and their micellization in water. Macromolecules, 40(12), 4338-4350. https://doi.org/10.1021/ma0609578
  5. Fahim, Mainuddin, Mittal, U., Kumar, J., Nimal, A. T., & Sharma, M. U. (2017). Single chip readout electronics for SAW based gas sensor systems. IEEE SENSORS, Glasgow, UK. https://doi.org/10.1109/icsens.2017.8233886
  6. Food and Agriculture Organization of the United Nations (FAO). (2024). Dairy Market Review: Overview of global market developments in 2023. https://openknowledge.fao.org/handle/20.500.14283/cd3524en
  7. Gallegos-Daniel, C., Taddei-Bringas, C., & González-Córdova, A. F. (2023). Overview of the dairy industry in México. Estudios Sociales, 33(61). https://doi.org/10.24836/es.v33i61.1251
  8. Goff, H. D. (2007). Dairy product processing equipment. In M. Kutz (ed.), Handbook of Farm, Dairy, and food machinery (pp. 193-214). Elsevier. https://doi.org/10.1016/b978-081551538-8.50010-8
  9. Jia, Z., Ren, L., Li, H., Ho, S., & Song, G. (2014). Experimental study of pipeline leak detection based on hoop strain measurement. Structural Control and Health Monitoring, 22(5), 799-812. https://doi.org/10.1002/stc.1718
  10. Katalin, A. (2006). Data acquisition for pressure monitoring and control in distributed systems. IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania. https://doi.org/10.1109/aqtr.2006.254622
  11. Lohr, K. R., & Rose, J. L. (2003). Ultrasonic guided wave and acoustic impact methods for pipe fouling detection. Journal of Food Engineering, 56(4), 315-324. https://doi.org/10.1016/s0260-8774(02)00156-5
  12. Mendoza-Payán, J. G., Flores, S., & Márquez‐Lucero, A. (2009). Design for an ultrafast water distributed sensor employing polyvinylamine cross-linked with Cu(II). Sensors and Actuators B: Chemical, 142(1), 130-140. https://doi.org/10.1016/j.snb.2009.07.045
  13. Mendoza-Payán, J. G. (2011). Estudio de copolimeros anfifilicos para el desarrollo de sensores de agua distribuidos. Centro de Investigación en Materiales Avanzados S. C. http://cimav.repositorioinstitucional.mx/jspui/handle/1004/1642
  14. Mieloszyk, M., Majewska, K., & Ostachowicz, W. (2018). THz spectroscopy application for detection and localization of water inclusion in glass composite. Composite Structures, 192, 537-544. https://doi.org/10.1016/j.compstruct.2018.03.040
  15. Neeraj, Suri, P. K., & Yadav, V. (2017). Design and implementation of wireless sensor network architecture for leak detection and monitoring in water supply distribution network. 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India. https://doi.org/10.1109/i2ct.2017.8226192
  16. Penza, M., Cassano, G., Sergi, A., Lo Sterzo, C., & Russo, M. V. (2001). SAW chemical sensing using poly-ynes and organometallic polymer films. Sensors and Actuators B: Chemical, 81(1), 88-98. https://doi.org/10.1016/s0925-4005(01)00937-6
  17. Salas, M., Hübner, M., Borysov, M., Koerdt, M., Rennoch, M., Herrmann, A. S., & Lang, W. (2018). Measuring material moisture in fiber reinforced polymers by integrated sensors. IEEE Sensors Journal, 18(9), 3836-3843. https://doi.org/10.1109/jsen.2018.2815029
  18. Wu, Y., Kim, K., Henry, M. F., & Youcef‐Toumi, K. (2017). Design of a leak sensor for operating water pipe systems. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada. https://doi.org/10.1109/iros.2017.8206506
  19. Zhou, J., Wang, H., Zhang, L., & Ma, J. (2014). Ab initio reversible addition–fragmentation chain transfer emulsion polymerization of styrene/butyl acrylate mediated by poly(acrylic acid)‐block‐polystyrene trithiocarbonate. Polymer International, 63(12), 2098-2104. https://doi.org/10.1002/pi.4755