Vol. 36 (2026): Volumen 36
Artículos de Investigación

Impact of urban trees on heavy metal reduction: analyzing citizen perception

Blanca Catalina Ramírez Hernández
Universidad de Guadalajara
Javier Eugenio García de Alba Verduzco
Universidad de Guadalajara
Paulina Beatriz Gutiérrez Martínez
Universidad de Guadalajara

Published 2026-02-18

How to Cite

Ramírez Hernández, B. C., García de Alba Verduzco, J. E., & Gutiérrez Martínez, P. B. (2026). Impact of urban trees on heavy metal reduction: analyzing citizen perception. Acta Universitaria, 36, 1–24. https://doi.org/10.15174/au.2026.4367

Abstract

Urban trees play a key role in reducing atmospheric heavy-metal pollution. In this study, we evaluated the capacity of three tree species to reduce airborne heavy metals and analyzed citizen perceptions and cultural consensus among residents of the municipality of Guadalajara regarding heavy-metal accumulation in urban tree leaves. Our results show that Ficus microcarpa leaves retained the highest concentrations of cadmium (Cd) and nickel (Ni), and that leaf washing removed approximately 30% of all analyzed metals. Perception data revealed differences associated with age and educational level; however, notably, 52% of participants believe that heavy metals accumulate in tree leaves. These findings underscore the need for data-driven policies to mitigate atmospheric pollution, as well as the importance of integrating citizen perspectives into urban planning.

References

  1. Al-Shidi, H. K., Ambusaidi, A. K., & Sulaiman, H. (2021). Public awareness, perceptions and attitudes on air pollution and its health effects in Muscat, Oman. Journal of the Air & Waste Management Association, 71(9), 1159-1174. https://doi.org/10.1080/10962247.2021.1930287
  2. Anderson, M. J., Gorely, R. N., & Clarke, K. R. (2008). PERMANOVA+ Primer: Guide to Software and Statistical Methods. PRIMER-E Ltd.
  3. Assi, M. A., Hezmee, M. N. M., Haron, A. W., Sabri, M. Y. M., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9(6), 660-671. https://doi.org/10.14202/vetworld.2016.660-671
  4. Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
  5. Cao, Z., Yu, G., Chen, Y., Cao, Q., Fiedler, H., Deng, S., Huang, J., & Wang, B. (2012). Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environment International, 49, 24-30. https://doi.org/10.1016/j.envint.2012.08.010
  6. Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User Manual/Tutorial. PRIMER.
  7. Cobbina, S. J., Chen, Y., Zhou, Z., Wu, X., Zhao, T., Zhang, Z., Feng, W., Wang, W., Li, Q., Wu, X., & Yang, L. (2015). Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. Journal of Hazardous Materials, 294, 109-120. https://doi.org/10.1016/j.jhazmat.2015.03.057
  8. Collins, C. M. T., Cook-Monie, I., & Raum, S. (2019). What do people know? Ecosystem services, public perception and sustainable management of urban park trees in London, U.K. Urban Forestry & Urban Greening, 43, 126362. https://doi.org/10.1016/j.ufug.2019.06.005
  9. Curșeu, P. L., & Schruijer, S. G. (2017). Stakeholder diversity and the comprehensiveness of sustainability decisions: the role of collaboration and conflict. Current Opinion in Environmental Sustainability, 28, 114-120. https://doi.org/10.1016/j.cosust.2017.09.007
  10. Cuya, A., Glikman, J. A., Groenendijk, J., Macdonald, D. W., Swaisgood, R. R., & Barocas, A. (2021). Socio-environmental perceptions and barriers to conservation engagement among artisanal small-scale gold mining communities in Southeastern Peru. Global Ecology and Conservation, 31, e01816. https://doi.org/10.1016/j.gecco.2021.e01816
  11. Fang, T., Jiang, T., Yang, K., Li, J., Liang, Y., Zhao, X., Gao, N., Li, H., Lu, W., & Cui, K. (2021). Biomonitoring of heavy metal contamination with roadside trees from metropolitan area of Hefei, China. Environmental Monitoring and Assessment, 193, 151. https://doi.org/10.1007/s10661-021-08926-1
  12. Ferrini, F., Fini, A., Mori, J., & Gori, A. (2020). Role of vegetation as a mitigating factor in the urban context. Sustainability, 12(10), 4247. https://doi.org/10.3390/su12104247
  13. Filipović-Trajković, R., Ilić, Z. S., Šunić, L., & Andjelković, S. (2012). The potential of different plant species for heavy metals accumulation and distribution. Journal of Food Agriculture & Environment, 10(1), 959-964.
  14. García-Antúnez, O., Lampinen, J., Raymond, C. M., Gulsrud, N. M., & Olafsson, A. S. (2023). Unpacking public perceptions of carbon sequestration and storage in urban greenery: implications for the social acceptability of carbon-oriented nature-based solutions. Nature-Based Solutions, 4, 100087. https://doi.org/10.1016/j.nbsj.2023.100087
  15. Guarino, F., Improta, G., Triassi, M., Castiglione, S., & Cicatelli, A. (2021). Air quality biomonitoring through Olea europaea L.: the study case of “Land of pyres”. Chemosphere, 282, 31052. https://doi.org/10.1016/j.chemosphere.2021.131052
  16. He, L., Wang, S., Liu, M., Chen, Z., Xu, J., & Dong, Y. (2023). Transport and transformation of atmospheric metals in ecosystems: a review. Journal of Hazardous Materials Advances, 9, 100218. https://doi.org/10.1016/j.hazadv.2022.100218
  17. Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, P. (2014). Metodología de la investigación (6ta ed.). Mc Graw Hill.
  18. Islam, M., Rana, M. P., & Ahmed, R. (2013). Environmental perception during rapid population growth and urbanization: a case study of Dhaka city. Environment, Development and Sustainability, 16(2), 443-453. https://doi.org/10.1007/s10668-013-9486-5
  19. Karmakar, D., & Padhy, P. K. (2019). Air pollution tolerance, anticipated performance, and metal accumulation indices of plant species for greenbelt development in urban industrial area. Chemosphere, 237, 124522. https://doi.org/10.1016/j.chemosphere.2019.124522
  20. Kumar, A., Kumar, P., Singh, H., & Kumar, N. (2021). Adaptation and mitigation potential of roadside trees with bio-extraction of heavy metals under vehicular emissions and their impact on physiological traits during seasonal regimes. Urban Forestry & Urban Greening, 58, 126900. https://doi.org/10.1016/j.ufug.2020.126900
  21. Li, P., Yu, J., Bi, C., Yue, J., Li, Q., Wang, L., Liu, J., Xiao, Z., Guo, L., & Huang, B. (2019). Health risk assessment for highway toll station workers exposed to PM2.5-bound heavy metals. Atmospheric Pollution Research, 10(4), 1024-1030. https://doi.org/10.1016/j.apr.2019.01.011
  22. Liu, H., Liu, H., & Cheng, Y. (2022). Illustrating the multi-stakeholder perceptions of environmental pollution based on big data: lessons from China. Regional Sustainability, 3(1), 12-26. https://doi.org/10.1016/j.regsus.2022.03.003
  23. Marques, V., Ursi, S., Lima, E., & Katon, G. (2020). Environmental perception: notes on transdisciplinary approach. Scientific Journal of Biology & Life Sciences, 1(3). https://doi.org/10.33552/sjbls.2020.01.000511
  24. Mayorga, C. M., Ruiz, M. E., & Aldas, D. S. (2020). Percepciones acerca de la contaminación del aire generada por el transporte urbano en Ambato, Ecuador. Revista ESPACIOS, 41(17). https://1.revistaespacios.com/a20v41n17/20411711.html
  25. Mebrahtu, T. F., McEachan, R. R. C., Yang, T. C., Crossley, K., Rashid, R., Hossain, R., Vaja, I., & Bryant, M. (2023). Differences in public’s perception of air quality and acceptability of a clean air zone: a mixed-methods cross sectional study. Journal of Transport & Health, 31, 101654. https://doi.org/10.1016/j.jth.2023.101654
  26. MohseniBandpi, A., Eslami, A., Ghaderpoori, M., Shahsavani, A., Jeihooni, A. K., Ghaderpoury, A., & Alinejad, A. (2018). Health risk assessment of heavy metals on PM2.5 in Tehran air, Iran. Data in Brief, 17, 347-355. https://doi.org/10.1016/j.dib.2018.01.018
  27. Mukherjee, A. G., Wanjari, U. R., Renu, K., Vellingiri, B., & Gopalakrishnan, A. V. (2022). Heavy metal and metalloid - induced reproductive toxicity. Environmental Toxicology and Pharmacology, 92, 103859. https://doi.org/10.1016/j.etap.2022.103859
  28. Neumayer, E. (2013). Weak versus Strong Sustainability. Elgaronline. https://doi.org/10.4337/9781781007082
  29. O’Cathain, A., Murphy, E., & Nicholl, J. (2007). Why, and how, mixed methods research is undertaken in health services research in England: a mixed methods study. BMC Health Services Research, 7(85). https://doi.org/10.1186/1472-6963-7-85
  30. Oltra, C., & Sala, R. (2016). Perception of risk from air pollution and reported behaviors: a cross-sectional survey study in four cities. Journal of Risk Research, 21(7), 869-884. https://doi.org/10.1080/13669877.2016.1264446
  31. Oltra, C., Sala, R., López-Asensio, S., Germán, S., & Boso, À. (2021). Individual-level determinants of the public acceptance of policy measures to improve urban air quality: the case of the Barcelona low emission zone. Sustainability, 13(3), 1168. https://doi.org/10.3390/su13031168
  32. Peniche-Camps, S., & Cortez-Huerta, M. (2020). La costumbre al envenenamiento: El caso de los contaminantes atmosféricos de la ciudad de Guadalajara, México. Revista de Ciencias Ambientales, 54(2), 1-19. https://doi.org/10.15359/rca.54-2.1
  33. Perri, G., Gargano, D., Randazzo, L., Calabrese, S., Brusca, L., Fuoco, I., Apollaro, C., & La Russa, M. F. (2024). Nature-based options for improving urban environmental quality: using black poplar trees for monitoring heavy metals pollution in urbanized contexts. Resources, 13(6), 85. https://doi.org/10.3390/resources13060085
  34. Ramírez, O. (2015). Identificación de problemáticas ambientales en Colombia a partir de la percepción social de estudiantes universitarios localizados en diferentes zonas del país. Revista Internacional de Contaminación Ambiental, 31(3), 293-310. https://www.scielo.org.mx/scielo.php?pid=S0188-49992015000300009&script=sci_arttext
  35. Saldarriaga-Noreña, H., Hernández-Mena, L., Murillo-Tovar, M., López-López, A., & Ramírez-Muñíz, M. (2011). Elemental contribution to the mass of PM2.5 in Guadalajara City, Mexico. Bulletin of Environmental Contamination and Toxicology, 86(5), 490-494. https://doi.org/10.1007/s00128-011-0240-0
  36. Sun, M., Li, F., Li, Y., Chen, J., & Cheng, G. (2024). Assessing the ecological and health risks associated with heavy metals in PM2.5 based on their potential bioavailability. Water Air & Soil Pollution, 235, 306. https://doi.org/10.1007/s11270-024-07118-0
  37. Turkyilmaz, A., Sevik, H., & Cetin, M. (2018). The use of perennial needles as biomonitors for recently accumulated heavy metals. Landscape and Ecological Engineering, 14(1), 115-120. https://doi.org/10.1007/s11355-017-0335-9
  38. Uka, U. N., Belford, E. J. D., & Elebe, F. A. (2021). Effects of road traffic on photosynthetic pigments and heavy metal accumulation in tree species of Kumasi Metropolis, Ghana. SN Applied Sciences, 3, 131. https://doi.org/10.1007/s42452-020-04027-9
  39. Wang, H., & Tassinary, L. G. (2024). Association between greenspace morphology and prevalence of non-communicable diseases mediated by air pollution and physical activity. Landscape and Urban Planning, 242, 104934. https://doi.org/10.1016/j.landurbplan.2023.104934
  40. Wang, S., Hu, G., Yu, R., Shen, H., & Yan, Y. (2021). Bioaccessibility and source-specific health risk of heavy metals in PM2.5 in a coastal city in China. Environmental Advances, 4, 100047. https://doi.org/10.1016/j.envadv.2021.100047
  41. Zhou, X., Xie, M., Zhao, M., Wang, Y., Luo, J., Lu, S., Li, J., & Liu, Q. (2023). Pollution characteristics and human health risks of PM2.5-bound heavy metals: a 3-year observation in Suzhou, China. Environmental Geochemistry and Health, 45(7), 5145-5162. https://doi.org/10.1007/s10653-023-01568-x