Published 2025-12-10
How to Cite
Copyright (c) 2025 Sharon Macias-Velasquez, Hugo I. Medellin-Castillo, Eduardo Martínez-Mendoza, Marina De La Vega

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
The use of virtual reality in industry to improve processes continues to expand, but it may also increase workload and negatively impact the well being of users.
This research aims to assess the level of workload caused by industrial assembly training in a haptic-enabled virtual reality system. Thirty inexperienced participants assembled a moderately difficult component consisting of eight pieces and were subsequently evaluated using the NASA Task Load Index. The results indicate that effort, mental demand, and frustration recorded the highest scores, while physical demand received the lowest score. Over 80% of participants experienced workload at high and very high levels, suggesting the need for immediate improvements in the training methodology.
References
- Andersen, B. J. H., Davis, A. T. A., Weber, G., & Wünsche, B. C. (2019). Immersion or diversion: does virtual reality make data visualisation more effective?. International Conference on Electronics, Information, and Communication (ICEIC), 1-7. https://doi.org/10.23919/ELINFOCOM.2019.8706403
- Bjørn, P., Han, M. L., Parezanovic, A., & Larsen, P. (2024). Social fidelity in cooperative virtual reality maritime training. Human–Computer Interaction, 1-25. https://doi.org/10.1080/07370024.2024.2372716
- Brunzini, A., Grandi, F., Peruzzini, M., & Pellicciari, M. (2021). Virtual training for assembly tasks: a framework for the analysis of the cognitive impact on operators. Procedia Manufacturing, 55, 527-534. https://doi.org/10.1016/j.promfg.2021.10.072
- Chessa, M., Maiello, G., Borsari, A., & Bex, P. J. (2019). The perceptual quality of the oculus rift for immersive virtual reality. Human–Computer Interaction, 34(1), 51-82. https://doi.org/10.1080/07370024.2016.1243478
- Chihara, T., Kobayashi, F., & Sakamoto, J. (2020). Evaluation of mental workload during automobile driving using one-class support vector machine with eye movement data. Applied Ergonomics, 89, 103201. https://doi.org/10.1016/J.APERGO.2020.103201
- Choi, S., Jung, K., & Noh, S. D. (2015). Virtual reality applications in manufacturing industries: past research, present findings, and future directions. Concurrent Engineering, 23(1), 40–63. https://doi.org/10.1177/1063293X14568814
- Cooper, N., Millela, F., Cant, I., White, M. D., & Meyer, G. (2021). Transfer of training—Virtual reality training with augmented multisensory cues improves user experience during training and task performance in the real world. PLoS One, 16(22), e0248225. https://doi.org/10.1371/JOURNAL.PONE.0248225
- De Arquer, I., & Nogareda, C. (2010). Estimación de la carga mental de trabajo: El método NASA TLX. Instituto Nacional de Seguridad e Higiene en el Trabajo. https://www.insst.es/documents/94886/327064/ntp_544.pdf/0da348cc-7006-4a8a-9cee-25ed6f59efdd
- Gallegos-Nieto, E., Medellín-Castillo, H. I., González-Badillo, G., Lim, T., & Ritchie, J. (2017). The analysis and evaluation of the influence of haptic-enabled virtual assembly training on real assembly performance. International Journal of Advanced Manufacturing Technology, 89, 581-598. https://doi.org/10.1007/s00170-016-9120-4
- Gallegos-Nieto, E., Medellin-Castillo, H. I., Xiu-Tian, Y., & Corney, J. (2020). Haptic-enabled virtual planning and assessment of product assembly. Assembly Automation, 40(4), 641-654. https://doi.org/10.1108/AA-10-2019-0169
- Harris, D., Wilson, M., & Vine, S. (2020). Development and validation of a simulation workload measure: the simulation task load index (SIM-TLX). Virtual Reality, 24(4), 557-566. https://doi.org/10.1007/s10055-019-00422-9
- Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Advances in Psychology, 52, 139-183. https://doi.org/10.1016/S0166-4115(08)62386-9
- Huegel, J. C., & O’Malley, M. K. (2014). Workload and performance analyses with haptic and visually guided training in a dynamic motor skill task. In M. Garbey, B. Bass, S. Berceli, C. Collet & P. Cerveri (eds.), Computational Surgery and Dual Training: Computing, Robotics and Imaging (pp. 377-394). Springer. https://doi.org/10.1007/978-1-4614-8648-0_25
- Kim, M., Jeon, C., & Kim, J. (2017). A study on immersion and presence of a portable hand haptic system for immersive virtual reality. Sensors, 17(5), 1141. https://doi.org/10.3390/s17051141
- Kim, Y. M., Rhiu, I., & Yun, M. H. (2020). A systematic review of a virtual reality system from the perspective of user experience. International Journal of Human-Computer Interaction, 36(10), 893–910. https://doi.org/10.1080/10447318.2019.1699746
- Kosch, T., Karolus, J., Zagermann, J., Reiterer, H., Schmidt, A., & Woźniak, P. W. (2023). A survey on measuring cognitive workload in human-computer interaction. ACM Computing Surveys, 55(13), 1-39. https://doi.org/10.1145/3582272
- Kung, C. H., Hsieh, T. C., & Smith, S. (2021). Usability study of multiple vibrotactile feedback stimuli in an entire virtual keyboard input. Applied Ergonomics, 90, 103270. https://doi.org/10.1016/j.apergo.2020.103270
- Lawson, G., Salanitri, D., & Waterfield, B. (2016). Future directions for the development of virtual reality within an automotive manufacturer. Applied Ergonomics, 53, 323–330. https://doi.org/10.1016/j.apergo.2015.06.024
- Li, K., Cheng, J., Zhang, Q., & Liu, J. (2018). Hand gesture tracking and recognition based human-computer interaction system and its applications. 2018 IEEE International Conference on Information and Automation (ICIA), 667-672. https://doi.org/10.1109/ICInfA.2018.8812508
- MacKenzie, I. S. (2013). Human-computer interaction: An empirical research perspective. Elsevier.
- Marucci, M., Di Flumeri, G., Borghini, G., Sciaraffa, N., Scandola, M., Pavone, E. F., Babiloni, F., Betti, V., & Aricò, P. (2021). The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence. Scientific Reports, 11(1), 1-15. https://doi.org/10.1038/s41598-021-84196-8
- National Aeronautics and Space Administration (NASA). (2019). NASA TLX TASK LOAD INDEX. https://humansystems.arc.nasa.gov/groups/tlx/tlxpaperpencil.php
- Noyes, J. M., & Bruneau, D. P. J. (2007). A self-analysis of the NASA-TLX workload measure. Ergonomics, 50(4), 514-519. https://doi.org/10.1080/00140130701235232
- Rivera-Flor, H., Hernandez-Ossa, K. A., Longo, B., & Bastos, T. (2019). Evaluation of task workload and intrinsic motivation in a virtual reality simulator of electric-powered wheelchairs. Procedia Computer Science, 160, 641-646. https://doi.org/10.1016/j.procs.2019.11.034
- Sugarindra, M., Suryoputro, M. R., & Permana, A. I. (2017). Mental workload measurement in operator control room using NASA-TLX. IOP Conference Series: Materials Science and Engineering, 277, 012022. https://doi.org/10.1088/1757-899X/277/1/012022
- Tao, D., Tan, H., Wang, H., Zhang, X., Qu, X., & Zhang, T. (2019). A systematic review of physiological measures of mental workload. International Journal of Environmental Research and Public Health, 16(15), 2716. https://doi.org/10.3390/ijerph16152716
- Tcha-Tokey, K., Christmann, O., Loup-Escande, E., Loup, G., & Richir, S. (2018). Towards a model of user experience in immersive virtual environments. Advances in Human-Computer Interaction, 2018(1), 7827286. https://doi.org/10.1155/2018/7827286
- Tong, Q., Wei, W., Zhang, Y., Xiao, J., & Wang, D. (2023). Survey on hand-based haptic interaction for virtual reality. IEEE Transactions on Haptics, 16(2), 154-170. https://doi.org/10.1109/TOH.2023.3266199
- Vanneste, P., Huang, Y., Park, J. Y., Cornillie, F., Decloedt, B., & Van Den Noortgate, W. (2020). Cognitive support for assembly operations by means of augmented reality: an exploratory study. International Journal of Human-Computer Studies, 143, 102480. https://doi.org/10.1016/j.ijhcs.2020.102480
- World Medical Association. (2017). Declaration of Helsinki – Ethical Principles for Medical Research Involving Human Subjects. https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/
- Xia, P., Mendes, A., & Restivo, M. T. (2013). A review of virtual reality and haptics for product assembly: from rigid parts to soft cables. Assembly Automation, 33, 157–164. https://doi.org/10.1108/01445151311306672