Assessment of the influence of hydrological, environmental, economic, and social indicators on the estimation of a hydrological system's vulnerability to climate change
Published 2025-12-10
How to Cite
Copyright (c) 2025 Felipe de Jesús Ruiz Chávez, Adrián Martínez Bárcenas, Joanna Alicia Gutiérrez Pérez, Ismael Orozco Medina

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abstract
Evaluating the vulnerability of hydrological systems is essential for designing mitigation strategies against climate change; however, its quantification is complex due to the many variables involved. Environmental, economic, social, and water-related indicators are used to assist in its calculation. Due to its widespread use, a sensitivity analysis has been conducted in this study to assess the influence of 17 indicators on the quantification of vulnerability. To do this, the MPDV1.0 model was used, which allows for calculating environmental, economic, social, and water vulnerability to climate change. Results indicate that six indicators directly influence the variability of vulnerability, underlining the degree of watershed exploitation and aquifer exploitation.
References
- Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268-281. https://doi.org/10.1016/j.gloenvcha.2006.02.006
- Ajtai, I., Stefanie, H., Maloș, C., Botezan, C., Radovici, A., Bizau-Carstea, M., & Baciu, C. (2023). Mapping social vulnerability to floods. A comprehensive framework using a vulnerability index approach and PCA analysis. Ecological Indicators, 154, 110838. https://doi.org/10.1016/j.ecolind.2023.110838
- Armaș, I., & Albulescu, A. (2025). From static to dynamic: conceptual and operational developments of vulnerability. iScience, 28(3). https://doi.org/10.1016/j.isci.2025.112070
- Balica, S. F., Dinh, Q., & Popescu, I. (2023). Chapter 4 - Vulnerability and exposure in developed and developing countries: large-scale assessments. En J. F. Shroder, P. Paron & G. Di Baldassarre (eds.), Hazards and Disasters Series (pp. 103-143). Elsevier. https://doi.org/10.1016/B978-0-12-819101-9.00013-3
- Becker, D., Schneiderbauer, S., Forrester, J. M., & Pedoth, L. (2015). Guidelines for development of indicators, indicator systems and provide challenges. White Rose Research Online. https://eprints.whiterose.ac.uk/103026/1/24_06_2015_emBRACE_Del_3_5_final.pdf
- Birkmann, J., Jamshed, A., McMillan, J. M., Feldmeyer, D., Totin, E., Solecki, W., Ibrahim, Z. Z., Roberts, D., Kerr, R. B., Poertner, H., Pelling, M., Djalante, R., Garschagen, M., Leal, W., Guha-Sapir, D., & Alegría, A. (2022). Understanding human vulnerability to climate change: a global perspective on index validation for adaptation planning. Science of the Total Environment, 803, 150065. https://doi.org/10.1016/j.scitotenv.2021.150065
- Dong, Z., Pan, Z., An, P., Wang, L., Zhang, J., He, D., Han, H., & Pan, X. (2015). A novel method for quantitatively evaluating agricultural vulnerability to climate change. Ecological Indicators, 48, 49–54. https://doi.org/10.1016/j.ecolind.2014.07.032
- Eriksen, S. H., & Kelly, P. M. (2006). Developing credible vulnerability indicators for climate adaptation policy assessment. Mitigation and Adaptation Strategies for Global Change, 12(4), 495-524. https://doi.org/10.1007/s11027-006-3460-6
- Fekete, A., Damm, M., & Birkmann, J. (2010). Scales as a challenge for vulnerability assessment. Natural Hazards, 55, 729–747. https://doi.org/10.1007/s11069-009-9445-5
- Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226–240. https://doi.org/10.1016/j.jhydrol.2006.06.032
- Fuchs, S., Heiss, K., & Hübl, J. (2007). Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazards and Earth System Sciences, 7(5), 495-506. https://doi.org/10.5194/nhess-7-495-2007
- Gabric, A. J. (2023). The climate change crisis: a review of its causes and possible responses. Atmosphere, 14(7), 1081. https://doi.org/10.3390/atmos14071081
- Gleeson, T., Wada, Y., Bierkens, M. F. P., & Van Beek, L. P. H. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197-200. https://doi.org/10.1038/nature11295
- Gumel, D. Y. (2022). Assessing climate change vulnerability: a conceptual and theoretical review. Journal of Sustainability and Environmental Management, 1(1), 22–31. https://nepjol.info/index.php/josem/article/view/43527
- Hinkel, J. (2011). “Indicators of vulnerability and adaptive capacity”: towards a clarification of the science–policy interface. Global Environmental Change, 21(1), 198-208. https://doi.org/10.1016/j.gloenvcha.2010.08.002
- Janssen, M. A., Schoon, M. L., Ke, W., & Börner, K. (2006). Scholarly networks on resilience, vulnerability and adaptation within the human dimensions of global environmental change. Global Environmental Change, 16(3), 240-252. https://doi.org/10.1016/j.gloenvcha.2006.04.001
- Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4), 255-267. https://doi.org/10.1016/s0959-3780(03)00054-2
- Martínez, A., Herrera, M., López, J., & Orozco, I. (2023). Coupled model for assessing the present and future watershed vulnerabilities to climate change impacts. Water, 15(4), 711. https://doi.org/10.3390/w15040711
- Mitchell, J. K., Devine, N., & Jagger, K. (1989). A contextual model of natural hazard. Geographical Review, 79(4), 391-409. https://doi.org/10.2307/215114
- Monterroso, A., Fernández, A., Trejo, R. I., Conde, A. C., Escandón, J., Villers, L., & Gay, C. (2014). Vulnerabilidad y adaptación a los efectos del cambio climático en México. Universidad Autónoma de México. https://atlasclimatico.unam.mx/VyA/#6
- Neset, T., Wiréhn, L., Opach, T., Glaas, E., & Linnér, B. (2019). Evaluation of indicators for agricultural vulnerability to climate change: the case of Swedish agriculture. Ecological Indicators, 105, 571–580. https://doi.org/10.1016/j.ecolind.2018.05.042
- O’Brien, K., Sygna, L., & Haugen, J. E. (2004). Vulnerable or resilient? A multi-scale assessment of climate impacts and vulnerability in Norway. Climatic Change, 64, 193-225. https://doi.org/10.1023/b:clim.0000024668.70143.80
- Orozco, I., Martínez, A., & Ortega, V. (2020). Assessment of the water, environmental, economic and social vulnerability of a watershed to the potential effects of climate change and land use change. Water, 12(6), 1682. https://doi.org/10.3390/w12061682
- Pacheco-Treviño, S., & Manzano-Camarillo, M. G. F. (2024). Review of water scarcity assessments: highlights of Mexico's water situation. WIREs Water, 11(4), e1721. https://doi.org/10.1002/wat2.1721
- Parry, M. L., Canziani, O., Palutikof, J., van der Linden, P., & Hanson, C. (eds.) (2007). Climate Change 2007: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf
- Rhoades, A. M., Risser, M. D., Stone, D. A., Wehner, M. F., & Jones, A. D. (2021). Implications of warming on western United States landfalling atmospheric rivers and their flood damages. Weather and Climate Extremes, 32, 100326. https://doi.org/10.1016/j.wace.2021.100326
- Rossi, G., & Peres, D. J. (2023). Climatic and other global changes as current challenges in improving water systems management: lessons from the case of Italy. Water Resources Manage, 37, 2387–2402. https://doi.org/10.1007/s11269-023-03424-0
- Smit, B., & Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability. Global Environmental Change, 16(3), 282-292. https://doi.org/10.1016/j.gloenvcha.2006.03.008
- Truong, P. M., Le, N. H., Hoang, T. H. D., Nguyen, T. K. T., Nguyen, T. D., Kieu, T. K., Nguyen, T. N., Izuru, S., Le, V. H. T., Raghavan, V., Nguyen, V. L., & Tran, T. A. (2023). Climate change vulnerability assessment using GIS and fuzzy AHP on an indicator-based approach. International Journal of Geoinformatics, 19(2), 39–53. https://doi.org/10.52939/ijg.v19i2.2565
- Turner, B. L., Kasperson, R. E., Matsone, P. A., McCarthy, J. J., Corell, R. W., Christensene, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074-8079. https://doi.org/10.1073/pnas.1231335100
- Vincent, K. (2007). Uncertainty in adaptive capacity and the importance of scale. Global Environmental Change, 17(1), 12-24. https://doi.org/10.1016/j.gloenvcha.2006.11.009
- Wehbe, C., & Baroud, H. (2024). Limitations and considerations of using composite indicators to measure vulnerability to natural hazards. Scientific Reports, 14, 19333. https://doi.org/10.1038/s41598-024-68060-z
- Wiréhn, L., Danielsson, Å., & Neset, T. S. (2015). Assessment of composite index methods for agricultural vulnerability to climate change. Journal Of Environmental Management, 156, 70-80. https://doi.org/10.1016/j.jenvman.2015.03.020
- Zhai, L., & Lee, J. (2024). Investigating vulnerability, adaptation, and resilience: a comprehensive review within the context of climate change. Atmosphere, 15(4), 474. https://doi.org/10.3390/atmos15040474