Vol. 35 (2025): Volumen 35
Artículos de Investigación

The Degradation of paracetamol with a Rotating Disc Photoreactor using TiO2 catalysts doped with metallic nanoparticles: Rotating Disc Photoreactor

Carlos Montalvo Romero
UNACAR
Phs
Universidad Autonoma del Carmen
Mc.
Universidad Autonoma del Carmen
Phs
Universidad Autonoma del Carmen
Phs
Universidad Autonoma del Carmen
Phs
Universidad Autonoma del Carmen

Published 2025-08-13

How to Cite

Montalvo Romero, C., Aguilar-Ucan, C. A., Lemus-Jauregui, E., Cerón-Bretón, R. M., Canedo-Lopez , Y., & Rangel-Marrón, M. (2025). The Degradation of paracetamol with a Rotating Disc Photoreactor using TiO2 catalysts doped with metallic nanoparticles: Rotating Disc Photoreactor . Acta Universitaria, 35, 1–18. https://doi.org/10.15174/au.2025.4449

Abstract

In this work, the performance of the rotating disk photoreactor with a TiO2 semiconductor used as a photocatalyst in its crystalline form and doped with iron (Fe3+) and Silver (Ag+) metallic nanoparticles (NP) in the heterogeneous photocatalysis process for paracetamol degradation is reported. The photocatalyst was impregnated in the discs, and doping with the Fe3+ and Ag+ NPs was carried out using the photo deposition technique. The photocatalysts were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the efficiency in the degradation of toxic compounds presents a high removal of the pollutant at low concentrations.

References

  1. Ahmad, M., Rehman, W., Khan, M. M., Qureshi, M. T., Gul, A., Haq, S., Ullah, R., Rab, A., & Menaa, F. (2021). Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. Journal of Environmental Chemical Engineering, 9(1), 104725. https://doi.org/10.1016/j.jece.2020.104725
  2. Aguilar, C. A., Montalvo, C., Ceron, J. G., & Moctezuma, E. (2011). Photocatalytic Degradation of Acetaminophen. International Journal of Environmental Research, 5(4), 1071–1078. https://doi.org/10.22059/IJER.2011.465
  3. Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10, 100262. https://doi.org/10.1016/j.ceja.2022.100262
  4. Atalay, S., & Ersöz, G. (2016). Novel catalysts in advanced oxidation of organic pollutants. Springer International Publishing. https://www.springer.com/book/10.1007/978-3-319-28950-2
  5. Badvi, K., & Javanbakht, V. (2021). Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. Journal of Cleaner Production, 280(2), 124518. https://doi.org/10.1016/j.jclepro.2020.124518
  6. Basavaraju, M., Mahamood, S., Vittal, H., & Shrihari, S. (2011). A novel catalytic route to degrade paracetamol by Fenton process. International Journal of Research in Chemistry and Environment, 1(1), 157-164. https://www.researchgate.net/publication/256892237_A_novel_catalytic_route_to_degrade_paracetamol_by_Fenton_process
  7. Bello, M. M., & Raman, A. A. A. (2018). Adsorption and oxidation techniques to remove organic pollutants from water. En G. Crini & E. Lichtfouse (eds.), Green adsorbents for pollutant removal. Environmental chemistry for a sustainable world (pp. 249-300). Springer. https://doi.org/10.1007/978-3-319-92111-2_8
  8. Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Science, 22(13), 7202. https://doi.org/10.3390/ijms22137202
  9. Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22, 5711-5741. https://link.springer.com/article/10.1007%2Fs11356-014-3974-5
  10. Castilla-Caballero, D., Machuca-Martínez, F., Bustillo-Lecompte, C., & Colina-Márquez, J. (2018). Photocatalytic degradation of commercial acetaminophen: evaluation, modeling, and scaling-up of photoreactors. Catalysts, 8(5), 179. https://doi.org/10.3390/catal8050179
  11. Castro-Pastrana, L. I., Cerro-López, M., Toledo-Wall, M. L., Gómez-Oliván, L. M., & Saldívar-Santiago, M. D. (2021). Análisis de fármacos en aguas residuales de tres hospitales de la ciudad de Puebla, México. Ingeniería del Agua, 25(1), 59–73. https://doi.org/10.4995/ia.2021.13660
  12. Chakravorty, A., & Somnath, R. (2024). A review of photocatalysis, basic principles, processes, and materials. Sustainable Chemistry for the Environment, 8, 100155. https://doi.org/10.1016/j.scenv.2024.100155
  13. Chandren, S., & Rusli, R. (2022). Biosynthesis of TiO2 nanoparticles and their application as catalyst in biodiesel production. En M. Srivastava, M. A. Malik & P. K. Mishra (eds.), Green Nano Solution for Bioenergy Production Enhancement (pp. 127-168). Springer. https://doi.org/10.1007/978-981-16-9356-4_6
  14. Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12(143). https://doi.org/10.1186/s11671-017-1904-4
  15. Dodoo-Arhin, D., Asiedu, T., Agyei-Tuffour, B., Nyankson, E., Obada, D., & Mwabora, J. M. (2021). Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles. Materials Today: Proceedings, 38, 809-815. https://doi.org/10.1016/j.matpr.2020.04.597
  16. El Nemr, A., Helmy, E. T., Gomaa, E. A., Eldafrawy, S., & Mousa, M. (2019). Photocatalytic and biological activities of undoped and doped TiO2 prepared by green method for water treatment. Journal of Environmental Chemical Engineering, 7(5), 103385. https://doi.org/10.1016/j.jece.2019.103385
  17. Escobar-Alarcón, L., & Solís-Casados, D. A. (2021). Desarrollo de fotocatalizadores basados en TiO2 en forma de película delgada para la degradación de moléculas orgánicas en solución acuosa. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 14(26), 1-23. https://doi.org/10.22201/ceiich.24485691e.2021.26.69646
  18. Fateixa, S., Mulandeza, O., Nogueira, H. I. S., & Trindade, T. (2023). Raman imaging studies on the stability of Paracetamol tablets under different storage conditions. Vibrational Spectroscopy, 124, 103488. https://doi.org/10.1016/j.vibspec.2022.103488
  19. Gandra, U. R., Reddy, P. S., Salam, A., Gajagouni, S. P., Alfantazi, A., & Mohideen, M. I. H. (2024). TiO2 supported pallidum-bipyridyl complex as an efficient catalyst for Suzuki–Miyaura reaction in aqueous-ethanol. Scientific Report, 14, 7323. https://doi.org/10.1038/s41598-024-57534-9
  20. González, L. A., Chino, M. R., May, M., Iuga, C., & Martínez, S. A. (2020). Degradación fotocatalítica del paracetamol utilizando diferentes fotocalizadores del TiO2 dopados con grafeno y plata. Revista Tendencias en Docencia e Investigación en Química, 6(6), 388-394. https://hdl.handle.net/11191/7740
  21. Hasan, A. K. M. M., Dey, S. C., Rahman, M. M., Zakaria, A. M., Sarker, M., Ashaduzzaman, M. D., & Shamsuddin, S. M. D. (2020). A kaolinite/TiO2/ZnO-based novel ternary composite for photocatalytic degradation of anionic azo dyes. Bulletin of Materials Science, 43(27). https://doi.org/10.1007/s12034-019-1964-4
  22. He, B., Zhao, Q., Zeng, Z., Wang, X., & Han, S. (2015). Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core–shell catalyst for CO oxidation at low temperature. Journal of Materials Science, 50, 6339–6348. https://doi.org/10.1007/s10853-015-9181-z
  23. Hemmati, S., Nasseri, S., Mahvi, A. H., Nabizadeh, R., & Javadi, A. H. (2014). Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles. Journal of Environmental Health Science and Engineering, 12(101). https://doi.org/10.1186/2052-336X-12-101
  24. Hmoudah, M., Paparo, R., Chianese, C., El-Qanni, A., Salmi, T., Tesser, R., Russo, V., & Di Serio, M. (2025). Ibuprofen photodegradation promoted by ZnO and TiO2-P25 nanoparticles: a comprehensive kinetic, reaction mechanisms, and thermodynamic investigation. Journal of Water Process Engineering, 69, 106598. https://doi.org/10.1016/j.jwpe.2024.106598
  25. Islam, T., Jing, H., Yang, T., Zubia, E., Goos, A. G., Bernal, R. A., Botez, C. E., Narayan, M., Chan, C. K., & Noveron, J. C. (2018). Fullerene stabilized gold nanoparticle supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering, 6(4), 3827-3836. https://doi.org/10.1016/j.jece.2018.05.032
  26. Kanchanatip, E., Kiattisaksiri, P., & Neramittagapong, A. (2023). Photocatalytic treatment of real liquid effluent from hydrothermal carbonization of agricultural waste using metal doped TiO2/UV system. Journal of Environmental Science and Health, 58(3), 246-255. https://doi.org/10.1080/10934529.2023.2184156
  27. Kaur, A., Gupta, G., Ibhadon, A. O., Salunke, D. B., Sinha, A. S. K., & Kansal, S. K. (2018). A Facile synthesis of silver modified ZnO nanoplates for efficient removal of ofloxacin drug in aqueous phase under solar irradiation. Journal of Environmental Chemical Engineering, 6(3), 3621-3630. https://doi.org/10.1016/j.jece.2017.05.032
  28. Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L., & Sim, L. C. (2020). An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 27, 2522-2565. https://doi.org/10.1007/s11356-019-07193-5
  29. Kumar, S., Sharma, S. K., Kaushik, R. D., & Purohit, L. P. (2021). Chalcogen-doped zinc oxide nanoparticles for photocatalytic degradation of Rhodamine B under the irradiation of ultraviolet light. Materials Today Chemistry, 20, 100464. https://doi.org/10.1016/j.mtchem.2021.100464
  30. Marimuthu, S., Antonisamy, A. J., Malayandi, S., Rajendran, K., Tsai, P., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology B: Biology, 205, 111823. https://doi.org/10.1016/j.jphotobiol.2020.111823
  31. Mehrabadi, B. A. T., Eskandari, S., Khan, U., White, R. D., & Regalbuto, J. R. (2017). Chapter One - A review of preparation methods for supported metal catalysts. En C. Song (ed.), Advances in catalysis (pp. 1-35). Academic Press. https://doi.org/10.1016/bs.acat.2017.10.001
  32. Mikhailova, E. O. (2020). Silver nanoparticles: mechanism of action and probable bio-application. Journal of Functional Biomaterials, 11(4), 84. https://doi.org/10.3390/jfb11040084
  33. Montalvo-Romero, C. (2009). Degradación fotocatalítica de compuestos que aportan olor al agua potable y residual [Tesis doctoral]. Universidad Autónoma de San Luis Potosí.
  34. Montalvo-Romero, C., Aguilar-Ucán, C., Alcocer-De la hoz, R., Ramirez-Elias, M., & Cordova-Quiroz, V. (2018). A semi-pilot photocatalytic rotating reactor (RFR) with supported TiO2/Ag catalysts for water treatment. Molecules, 23(1), 224. https://doi.org/10.3390/molecules23010224
  35. Mosleh, S., & Mehrorang, G. (2021). Chapter 13 - Photocatalytic reactors: technological status, opportunities, and challenges for development and industrial upscaling. En M. Ghaedi (ed.), Interface science and technology (pp. 761-790). Elsevier.
  36. Munguti, L. K., Dejene, F. B., & Muthee, D. K. (2023). Zeolite Na-A supported TiO2: effects of TiO2 loading on structural, optical and adsorption properties. Materials Science and Engineering: B, 289, 116281. https://doi.org/10.1016/j.mseb.2023.116281
  37. Munnik, P., de Jongh, P. E., & de Jong, K. P. (2015). Recent developments in the synthesis of supported catalysts. Chemical Reviews, 115(14), 6687-6718. https://doi.org/10.1021/cr500486u
  38. Nguyen, T. H., Hoang, N. H., Tran, C. V., Nguyen, P. T. M., Dang, T., Chung, W. J., Chang, S. W., Nguyen, D. D., Kumar, P. S., & La, D. D. (2022). Green synthesis of a photocatalyst Ag/TiO2 nanocomposite using Cleistocalyx operculatus leaf extract for degradation of organic dyes. Chemosphere, 306, 135474. https://doi.org/10.1016/j.chemosphere.2022.135474
  39. Olama, N., Dehghani, M., & Malakootian, M. (2018). The removal of amoxicillin from aquatic solutions using the TiO2/UV C nanophotocatalytic method doped with trivalent iron. Applied Water Science, 8(97). https://doi.org/10.1007/s13201-018-0733-7
  40. Quintero-González, C. A., Martínez, J., Calva-Yáñez, J. C., & Oropeza-Guzmán, M. T. (2025). Physicochemical wastewater treatment improvement by hydrodynamic cavitation nanobubbles. Journal of Water Process Engineering, 69, 106581. https://doi.org/10.1016/j.jwpe.2024.106581
  41. Rui, Z., Wu, S., Peng, C., & Ji, H. (2014). Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion. Chemical Engineering Journal, 243, 254-264. https://doi.org/10.1016/j.cej.2014.01.010
  42. Santhi, K., Manikandan, P., Rani, C., & Karuppuchamy, S. (2015). Synthesis of nanocrystalline titanium dioxide for photodegradation treatment of remazol brown dye. Applied Nanoscience, 5, 373-378. https://doi.org/10.1007/s13204-014-0327-0
  43. Saravanan, C., Rajesh, R., Kaviarasan, T., Muthukumar, K., Kavitake, D., & Shetty, P. H. (2017). Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports, 15, 33-40. https://doi.org/10.1016/j.btre.2017.02.006
  44. Seda, T., & Hearne, G. R. (2004). Pressure induced Fe2++Ti4+ → Fe3++Ti3+ intervalence charge transfer and the Fe3+/Fe2+ ratio in natural ilmenite (FeTiO3) minerals. Journal of Physics: Condensed Matter, 16, 2707. https://doi.org/10.1088/0953-8984/16/15/021
  45. Snik, A., Larzek, M., & El Bouari, A. (2025). Innovative aqueous-phase synthesized graphene nanocomposites with nano-zerovalent copper for efficient industrial wastewater treatment. Journal of Water Process Engineering, 69, 106605. https://doi.org/10.1016/j.jwpe.2024.106605
  46. Tian, J., Zhang, Y., Qian, F., Cao, M., Cheng, Y., Li, J., Tian, M., Li, W., & Wang, L. (2023). The design of novel swash plate photocatalytic reactor with PAN/BiInOCl membrane photocatalyst for excellent RhB degradation. Journal of Alloys and Compounds, 968, 171894. https://doi.org/10.1016/j.jallcom.2023.171894
  47. Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A., Vinayagam, R., & Selvaraj, R. (2019). Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. Journal of Photochemistry and Photobiology B: Biology, 199, 111621. https://doi.org/10.1016/j.jphotobiol.2019.111621
  48. Xiao, J., Zhou, L., Jin, D., Zhou, H., Liu, D., & Zheng, B. (2024). Preparation of the Au/TiO2 catalyst for the oxidation of 2-Phenylethyl alcohol using a cacumen platycladi extract as a reducing agent. Petroleum Chemistry, 64, 322–329. https://doi.org/10.1134/S0965544124030125
  49. Zhang, Y., Jiang, W., Ren, Y., Wang, B., Liu, Y., Hua, Q., & Tang, J. (2020). Efficient photocatalytic degradation of 2-chloro-4,6-dinitroresorcinol in salty industrial wastewater using glass-supported TiO2. Korean Journal of Chemical Engineering, 37(3), 536–545. https://doi.org/10.1007/s11814-019-0448-y
  50. Zhu, C., Yue, H., Jia, J., & Rueping, M. (2020). Recent advances in nickel-catalyzed C-heteroatom cross-coupling reactions under mild conditions via facilitated reductive elimination. Angewandte Chemie International Edition, 60(33), 17810-17831. https://doi.org/10.1002/anie.202013852