Vol. 26 No. 2 (2016)
Artículos de Investigación

Synthesis and characterization of gamma alumina and compared with an activated charcoal on the fluoride removal from potable well water

Adrián Zamorategui Molina
Universidad de Guanajuato
Bio
Natividad Ramírez Ramírez
Universidad de Guanajuato
Bio
J. Merced Martínez Rosales
Universidad de Guanajuato
Bio
Alma H. Serafín M.
Universidad de Guanajuato
Bio

Published 2016-05-17

Keywords

  • Fluoride,
  • gamma alumina,
  • activated carbon,
  • drinking water.
  • Fluoruro,
  • gamma alúmina,
  • carbón activado,
  • agua potable.

How to Cite

Zamorategui Molina, A., Ramírez Ramírez, N., Martínez Rosales, J. M., & Serafín M., A. H. (2016). Synthesis and characterization of gamma alumina and compared with an activated charcoal on the fluoride removal from potable well water. Acta Universitaria, 26(2), 30–35. https://doi.org/10.15174/au.2016.878

Abstract

Fluoride compounds are widely distributed in nature and are generated in many industrial processes. In many parts of the world, significant causes of diseases are associated with elevated concentrations in drinking water. In comparison with other techniques, adsorption onto a solid surface (activated alumina, activated charcoal, zeolites, etc.) is a simple, versatile, and appropriate process for removal the fluoride. In this study, we synthesized Gamma alumina (γ-Al2O3) by homogeneous precipitation and compared its effectiveness at removing fluoride from water to a commercial brand activated charcoal. Process was carried out at pH 5 and 7. Fibrillar morphology of the γ-Al2O3 powder presents high porosity in comparison with the activated charcoal that has many small pores in its compact structure. Mesoporous γ-Al2O3 powder has a lower surface area (332 m· g–1) than microporous charcoal powder (601 m2 ·g–1), as determined by both gas nitrogen adsorption-desorption and scanning electron microscopy. However, γ-Al2O3 has a higher zeta potential and lower particle size than that determined for the activated charcoal. Adsorption isotherms of the fluoride removal concur with the Langmuir model for both adsorbents. γ-Al2O3 removes up to 95.5% of fluoride ions, significantly more than the activated charcoal (26%) at pH 5. Thus, based on results obtained, the adsorption process is controlled by the diffusion of fluoride ions in liquid immediately adjacent the outer surface of the adsorbent material. 

References

  1. Bowen, P., Carry, C., Luxembourg, D., & Hofmann, H. (2005). Colloidal processing and sintering of nanosized transition aluminas. Powder Technology, 157(1), 100-107.


  2. Craig, L., Lutz, A., Berry, K. A., & Yang, W. (2015). Recommendations for fluoride limits in drinking water based on estimated daily fluoride intake in the Upper East Region, Ghana. Science of the Total Environment, 532, 127-137. doi: 10.1016/j.scitotenv.2015.05.126


  3. Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., & Moreno-Castilla, C. (2012). Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresource technology, 111, 185-190. doi: 10.1016/j.biortech.2012.02.010


  4. Fordyce, F. M. (2011). Fluorine: Human Health Risks. Reference Module in Earth Systems and Environmental Sciences. Encyclopedia of Environmental Health, 2, 776-785. doi: 10.1016/B978-0-444-52272-6.00697-8


  5. Ghorai, S., & Pant, K. K., (2005). Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Separation and purification technology, 42(3), 265-271.


  6. Guzmán, A., Nava, J. L., Coreño, O., Rodríguez, I., & Gutiérrez, S. (2016). Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor. Chemosphere, 144, 2113-2120.


  7. Kim, S. M., Lee, Y. J., Jun, K. W., Park, J. Y., & Potdar, H. S. (2007). Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite. Materials Chemistry and Physics, 104(1), 56-61.


  8. Lavado-Meza, C., Sun-Kou, M., & Recuay-Arana, N. (2012). Remoción de cromo (VI) empleando carbones preparados por activación química a partir de las astillas de eucalipto. Revista de la Sociedad Química del Perú, 78(1), 14-26.


  9. Maheshwari, R. C. (2006). Fluoride in drinking water and its removal. Journal of Hazardous Materials, 137(1), 456-463.


  10. Maliyekkal, S. M., Shukla, S., Philip, L., & Nambi, I. M. (2008). Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chemical Engineering Journal, 140(1), 183-192.


  11. Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., & Singh, P. (2009). Review of fluoride removal from drinking water. Journal of Environmental Management, 91(1), 67-77.


  12. Mor, S., Ravindra, K., & Bishnoi, N. R. (2007). Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresource Technology, 98 (4), 954-957.


  13. NOM-127-SSA1. (1994). Norma Oficial Mexicana. Salud ambiental, agua para uso y consumo humano-límites

  14. permisibles de calidad y tratamientos a que debe someterse el agua para su potabilización. Retrieved from
  15. http://www.salud.gob.mx/unidades/cdi/nom/127ssa14.html

  16. Park, B. K., & Jeong, J. M. (2008). Effect of the H2O/Al2(SO4)3 ratio on physical properties in the synthesis of porous AlO(OH) nano gel by homogeneous precipitation. Journal of Ceramic Processing Research, 9(2), 204-208.


  17. Rafique, A., Awan, M. A., Wasti, A., Qazi, I. A., & Arshad, M. (2013). Removal of Fluoride from Drinking Water Using Modified Immobilized Activated Alumina. Journal of chemistry, 1-7. doi: 10.1155/2013/386476


  18. Sugita, S., Contreras, C., Juárez, H., Aguilera, A., & Serrato, J. (2001). Homogeneous Precipitation and Phase Transformation of Mullite Ceramic Precursor,International Journal of Inorganic Materials, 3(7), 625-632.


  19. Sujana, M. G., & Anand, S. (2010). Iron and aluminium based mixed hydroxides: A novel sorbent for fluoride removal from aqueous solutions. Applied Surface Science, 256(23), 6956-6962.


  20. Thompson, L. J. (2012). Chapter 35: Fluoride. In Veterinary Toxicology (2a Ed.) (pp. 513- 516). Elsevier. doi:10.1016/B978-0-12-385926-6.00035-1


  21. Tripathy, S. S., Bersillon, J. L., & Gopal, K. (2006). Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Separation and Purification Technology, 50(3), 310-317.


  22. Valdez-Jiménez, L., Soria-Fregozo, C., Miranda-Beltrán, M. L., Gutiérrez-Coronado, O., & Pérez-Vega, M. I. (2011). Efectos del flúor sobre el sistema nervioso central. Neurología, 26(5), 297-300.


  23. Vences-Álvarez, E., Velázquez-Jiménez, L. H., Chazaro-Ruiz, L. F., Díaz-Flores, P. E., & Rangel-Méndez, J. R. (2015). Fluoride removal in water by a hybrid adsorbent lanthanum–carbon. Journal of colloid and interface science, 455, 194-202. doi: 10.1016/j.jcis.2015.05.048


  24. Zamorategui, A., Soto, J. A., & Sugita, S. (2012a). The effect of drying methods on the textural properties of the pseudoboehmite synthesized by homogeneous precipitation. Advances and Applications in Mechanical Engineering and Technology, 4(4), 1-17.


  25. Zamorategui, A., Sugita, S., Zárraga, R., Tanaka, S., & Uematsu, K. (2012b). Evaluation of dispersability of gamma alumina prepared by homogeneous precipitation. Journal of the Ceramic Society of Japan, 120(1403), 290-294.


  26. Moreira, L. D. F., Oliveira, M. L. D., Lirani-Galvao A. P., Marin-Mio, R. V., Santos, R. N. D., & Lazaretti-Castro, M. (2014). Physical exercise and osteoporosis: effects of different types of exercises on bone and physical function of postmenopausal women. Arquivos Brasileiros de Endocrinologia & Metabologia, 58(5), 514-22. doi: 10.1590/0004-2730000003374


  27. Nikander, R., Sievänen, H., Heinonen, A., Daly, R. M., Uusi-Rasi, K., & Kannus, P. (2010). Targeted exercise against osteoporosis. A systematic review and meta-analysis for optimizing bone strength throughout life. BMC medicine, 8(1), 47. doi: 10.1186/1741-7015-8-47


  28. National Osteoporosis Foundation (2014). Clinician’s Guide to Prevention and Treatment of Osteoporosis. Washington, DC: National Osteoporosis Foundation.


  29. Norma Oficial Mexicana NOM-035-SSA2-2012 (2013). Para la prevención y control de enfermedades en la perimenopausia y postmenopausia de la mujer. Criterios para brindar atención médica. Retrieved December 12, 2014 from http://dof.gob.mx/nota_detalle.php?codigo=5284235&fecha=07/01/2013


  30. Papaioannou, A., Morin, S., Cheung, A. M., Atkinson, S., Brown, J. P., Feldman, S., Hanley, D. A., Hodsman, A., Jamal, S. A., Kaiser, S. M., Kvern, B., Siminoski, K., & Leslie, W. D., for the Scientific Advisory Council of Osteoporosis Canada (2010). 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. Canadian Medical Association Journal, 182(17), 1864-1873. doi: 10.1503/cmaj.100771


  31. Registered Nurses Association of Ontario (2005). Prevention of falls and falls injuries in the older adult (Revised) Toronto, ON (Canada).


  32. Riggs, B. L., Khosla, S., & Melton, L. J. III. (2012). Better tools for assessing osteoporosis. The Journal of Clinical Investigation, 122(12), 4323-4324. doi: 10.1172/JCI66746


  33. Russo, C. R. (2009). The effects of exercise on bone. Basic concepts and implications for the prevention of fractures. Clinical Cases in mineral and bone metabolism: the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases, 6(3), 223-228.

  34. Sinaki, M. (2010). Musculoskeletal rehabilitation in patients with osteoporosis – Rehabilitation of Osteoporosis Program-Exercise (ROPE). Journal für Mineralstoffwechsel, 17(2), 60-65.


  35. Sinaki, M. (2012). Exercise for patients with osteoporosis: management of vertebral compression fractures and trunk strengthening for fall prevention. PM&R, 4(11), 882-888. doi: 10.1016/j.pmrj.2012


  36. Szulc, P. (2012). Association between cardiovascular diseases and osteoporosis-reappraisal. BoneKEy Reports, 1(8), 144. doi: 10.1038/bonkey.2012.144


  37. Turner, C. H. (1998). Three rules for bone adaptation to mechanical stimuli. Bone, 23(5), 399-407.


  38. Wayne, P. M., Kiel, D. P., Buring, J. E., Connors, E. M., Bonato, P., Yeh, G. Y., Cohen, C. J., Mancinelli, C., & Davis, R. B. (2012). Impact of Tai Chi exercise on multiple fracture-related risk factors in post-menopausal osteopenic women: a pilot pragmatic, randomized trial. BioMed Central Complementary & Alternative Medicine, 12(1), 7-12. doi: 10.1186/1472-6882-12-7


  39. Wong, C. C., & McGirt, M. J. (2013).Vertebral compression fractures: a review of current management and multimodal therapy. Journal of Multidisciplinary Healthcare, 6, 205-214. doi: 10.2147/JMDH.S31659