El microambiente como limitante de la actividad de los visitantes florales en una población del bonete de obispo (Astrophytum myriostigma)
Publicado 2024-03-27
Cómo citar
Resumen
Las condiciones bióticas y ambientales podrían afectar la dinámica planta-visitante floral y la deposición de frutos en las angiospermas. Los objetivos del estudio fueron: 1) probar el efecto del microambiente sobre los visitantes florales de A. myriostigma y 2) describir la estructura de la red planta-visitante floral. Los datos se registraron durante dos floraciones sincrónicas. El efecto del microambiente sobre los visitantes florales fue analizado con modelos lineales generalizados, y se describió la estructura de la red de interacciones. Los visitantes fueron afectados principalmente por la presión atmosférica y el punto de rocío. Hubo menos visitantes florales en plantas cercanas a nodrizas y rocas. La topología de la red de interacciones tuvo una tendencia de estructura anidada. Ante la disminución de polinizadores, estos hallazgos ayudan a comprender qué factores limitan la actividad de los visitantes florales. Las interacciones entre estos visitantes y las plantas podrían modificarse por el cambio climático.
Citas
- Abrol, D. P. (1988). Environmental factors influencing pollination activity of Apis mellifera on Brassica campestris. Journal of the Indian Institute of Science, 68(1-2), 49-52. https://journal.iisc.ac.in/index.php/iisc/article/view/1201/0
- Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D., & Ulrich, W. (2008). A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos, 117(8), 1227-1239. https://doi.org/10.1111/j.0030-1299.2008.16644.x
- Ankney, P. F. (1984). A note on barometric pressure and behavior in Drosophila pseudoobscura. Behavior Genetics, 14, 315-317. https://doi.org/10.1007/BF01065549
- Ball, P. (2003). Global greenhouse affects air pressure. Nature. https://doi.org/10.1038/news030317-6
- Bascompte, J., Jordano, P., Melián, C. J., & Olesen, J. M. (2003). The nested assembly of plant–animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, 100, 9383-9387. https://doi.org/10.1073/pnas.1633576100
- Bascompte, J., Jordano, P., & Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312(5772), 431-433. https://doi.org/10.1126/science.1123412
- Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: from individuals to ecosystems. Blackwell Publishing Ltd.
- Beutelspacher, C. R., & Ramírez, M. (1973). Polinización en Stenocereus marginatus (D.C.) Briton & Rose. Cactáceas y Suculentas Mexicanas, 18, 80-83.
- Bishop, J., Jones, H. E., O’Sullivan, D. M., & Potts, S. G. (2016). Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba). Journal of Experimental Botany, 68(8), 2055-2063. https://doi.org/10.1093/jxb/erw430
- Blair, A. W., & Williamson, P. S. (2008). Effectiveness and importance of pollinators to the star cactus (Astrophytum asterias). The Southwestern Naturalist, 53(4), 423-430. https://doi.org/10.1894/JB-04.1
- Blüthgen, N., Fründ, J., Vázquez, D. P., & Menzel, F. (2008). What do interaction network metrics tell us about specialization and biological traits. Ecology, 89(12), 3387-3399. https://doi.org/10.1890/07-2121.1
- Blüthgen, N., Menzel, F., & Blüthgen, N. (2006). Measuring specialization in species interaction networks. BMC Ecology, 6(9). http://dx.doi.org/10.1186/1472-6785-6-9
- Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N. (2007). Specialization, constraints and conflicting interests in mutualistic networks. Current Biology, 17(7), 341-346. https://doi.org/10.1016/j.cub.2006.12.039
- Borror, D., & White, R. (1970). A field guide to the insects of North of Mexico. Houghton Mifflin Company.
- Bravo-Hollis, H., & Sánchez-Mejorada, H. (1986). Las cactáceas de México. Vol. II. UNAM.
- Brittain, C., Williams, N., Kremen, C., & Klein, A. M. (2013). Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings of the Royal Society B, 280, 20122767. https://doi.org/10.1098/rspb.2012.2767
- Cádiz-Véliz, A., Verdessi, F., & Carvallo, G. O. (2021). Shrub canopy matrix decreases reproductive output of a sheltered plant via pollinator exclusion. Basic and Applied Ecology, 56, 419-430. https://doi.org/10.1016/j.baae.2021.04.013
- Cano-Villegas, O., Muro-Pérez, G., Castañeda-Gaytán, G., & Sánchez-Salas, J. (2022). Tendencias locales de cambio climático y sus efectos en la Cuenca Nazas-Aguanaval: análisis de un periodo de 80 años (1940-2020). Revista Ciencia UANL, 25(113), 34-38. https://doi.org/10.29105/cienciauanl25.113-1
- Chadwick, L. E., & Williams, C. M. (1949). The effects of atmospheric pressure and composition on the flight of Drosophila. The Biological Bulletin, 97(2), 115-137. https://doi.org/10.2307/1538291
- Crespo, J. E., & Castelo, M. K. (2012). Barometric pressure influences host-orientation behavior in the larva of a dipteran ectoparasitoid. Journal of Insect Physiology, 58(12), 1562-1567. https://doi.org/10.1016/j.jinsphys.2012.09.010
- Cuevas, J., Rallo, L., & Rapoport, H. (1994). Initial fruit set at high temperature in olive, Olea europaea L. Journal of Horticultural Science, 69(4), 665-672. https://doi.org/10.1080/14620316.1994.11516498
- Dalsgaard, B., Martín-González, A. M., Olesen, J. M., Ollerton, J., Timmermann, A., Andersen, L. H., & Tossas, A. G. (2009). Plant-hummingbird interactions in the West Indies: floral specialization gradients associated with environment and hummingbird size. Oecologia, 159, 757-766. https://doi.org/10.1007/s00442-008-1255-z
- Dalsgaard, B., Trøjelsgaard, K., Martín-González, A. M., Nogués-Bravo, D., Ollerton, J., Petanidou, T., Sandel, B., Schleuning, M., Wang, Z., Rahbek, C., Sutherland, W. J., Svenning, J. C., & Olesen, J. M. (2013). Historical climate‐change influences modularity and nestedness of pollination networks. Ecography, 36, 1331-1340. https://doi.org/10.1111/j.1600-0587.2013.00201.x
- Dáttilo, W., Fagundes, R., Gurka, C. A. Q., Silva, M. S. A., Vieira, M. C. L., Izzo, T. J., Díaz-Castelazo, C., Del-Claro, K., & Rico-Gray, V. (2014). Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship. PLoS ONE, 9, e99838. https://doi.org/10.1371/journal.pone.0099838
- Dáttilo, W., Guimarães, P. R., & Izzo, T. J. (2013). Spatial structure of ant-plant mutualistic networks. Oikos, 122(11), 1643-1648. https://doi.org/10.1111/j.1600-0706.2013.00562.x
- De Almeida, A., & Mikich, S. B. (2018). Combining plant-frugivore networks for describing the structure of neotropical communities. Oikos, 127(2), 184-196. https://doi.org/10.1111/oik.04774
- Delph, L. F., Johannsson, M. H., & Stephenson, A. G. (1997). How environmental factors affect pollen performance: ecological and evolutionary perspectives. Ecology, 78(6), 1632-1639. https://doi.org/10.1890/0012-9658(1997)078[1632:HEFAPP]2.0.CO;2
- Devoto, M., Medan, D., & Montaldo, N. H. (2005). Patterns of interaction between plants and pollinators along an environmental gradient. Oikos, 109(3), 461-472. https://doi.org/10.1111/j.0030-1299.2005.13712.x
- Díaz-Castelazo, C., Guimarães, P. R., Jordano, P., Thompson, J. N., Marquis, R. J., & Rico-Gray, V. (2010). Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology, 91(3), 793-801. https://doi.org/10.1890/08-1883.1
- Díaz-Castelazo, C., Martínez-Adriano, C. A., Dáttilo, W., & Rico-Gray, V. (2020). Relative contribution of ecological and biological attributes in the fine-grain structure of ant-plant networks. PeerJ, 8, e8314. https://doi.org/10.7717/peerj.8314
- Díaz-Castelazo, C., Sánchez-Galván, I. R., Guimarães, P. R., Galdini-Raimundo, R. L., & Rico-Gray, V. (2013). Long-term temporal variation in the organization of an ant-plant network. Annals of Botany, 111(6), 1285-1293. https://doi.org/10.1093/aob/mct071
- Dobson, A. J., & Barnett, A. G. (2008). An introduction to generalized linear models (Third Edition). Chapman & Hall/CRC.
- Dormann, C. F., & Gruber, B. (2009). Package ”Bipartite”: visualizing bipartite networks and calculating some ecological indices. R statistical software. `R group'. Available at https://CRAN.R-project.org/ package=bipartite
- Dormann, C. F., Fründ, J., Blüthgen, N., & Gruber, B. (2009). Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, (2), 7-24. http://dx.doi.org/10.2174/1874213000902010007
- Dormann, C. F. (2011). How to be a specialist? quantifying specialization in pollination networks. Network Biology, 1(1), 1-20.
- Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Food-web structure and network theory: the role of connectance and size. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12917-12922. https://doi.org/10.1073/pnas.192407699
- Dupont, Y. L., Padrón, B., Olesen, J. M., & Petanidou, T. (2009). Spatio-temporal variation in the structure of pollination networks. Oikos, 118(8), 1261-1269. https://doi.org/10.1111/j.1600-0706.2009.17594.x
- Espíndola, A., Pellissier, L., & Álvarez, N. (2011). Variation in the proportion of flower visitors of Arum maculatum along its distributional range in relation with community-based climatic niche analyses. Oikos, 120(5), 728-734. https://doi.org/10.1111/j.1600-0706.2010.18937.x
- Flores, J., & Jurado, E. (2003). Are nurse-protégé interactions more common among plants from arid environments? Journal of Vegetation Science, 14(6), 911-916. https://doi.org/10.1111/j.1654-1103.2003.tb02225.x
- Fox, J. (2016). Applied regression analysis and generalized linear models (Third Edition). SAGE Publications, Inc.
- García, E. (1981). Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana) (Tercera Edición). Instituto de Geología, Universidad Autónoma de México.
- Gillett, N. P., Zwiers, F. W., Weaver, A. J., & Stott, P. A. (2003). Detection of human influence on sea-level pressure. Nature, 422, 292-294. https://doi.org/10.1038/nature01487
- Gillot, C. (2005). Entomology (Third Edition). Springer.
- González-Elizondo, M. S., González-Elizondo, M., & Márquez-Linares, M. A. (2007). Vegetación y ecorregiones de Durango. Plaza y Valdés, S.A. de C.V.
- Grüter, C., & Ratnieks, F. L. W. (2011). Flower constancy in insect pollinators: Adaptive foraging behavior or cognitive limitation?. Communicative & Integrative Biology, 4(6), 633-636. https://doi.org/10.4161/cib.16972
- Guimarães, P. R., & Guimarães, P. (2006). Improving the analyses of nestedness for large sets of matrices. Environmental Modelling & Software, 21(10), 1512-1513. https://doi.org/10.1016/j.envsoft.2006.04.002
- Harder, L. D. (1990). Pollen removal by bumble bees and its implications for pollen dispersal. Ecology, 71(3), 1110-1125. https://doi.org/10.2307/1937379
- Harder, L. D., & Johnson, S. D. (2005). Adaptive plasticity of floral display size in animal-pollinated plants. Proceedings of the Royal Society B-Biological Sciences, 272, 2651-2657. https://doi.org/10.1098/rspb.2005.3268
- Haufe, W. O. (1954). The effects of atmospheric pressure on the flight responses of Aëdes aegypti (L.). Bulletin of Entomological Research, 45, 507-526. https://doi.org/10.1017/S000748530002959X
- Hedhly, A., Hormaza, J. I., & Herrero, M. (2003). The effect of temperature on stigmatic receptivity in sweet cherry (Prunus avium L.). Plant, Cell & Environment, 26(10), 1673-1680. https://doi.org/10.1046/j.1365-3040.2003.01085.x
- Hedhly, A., Hormaza, J. I., & Herrero, M. (2004). Effect of temperature on pollen tube kinetics and dynamics in sweet cherry, Prunus avium (Rosaceae). American Journal of Botany, 91(4), 558-564. https://doi.org/10.3732/ajb.91.4.558
- Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate warming affect plant‐pollinator interactions?. Ecology Letters, 12, 184-195. https://doi.org/10.1111/j.1461-0248.2008.01269.x
- Hernández-Yáñez, H., Lara-Rodríguez, N., Díaz-Castelazo, C., Dáttilo, W., & Rico-Gray, V. (2013). Understanding the complex structure of a plant-floral visitor network from different perspectives in Coastal Veracruz, México. Sociobiology, 60(3), 329-336. https://doi.org/10.13102/sociobiology.v60i3.329-336
- Herrera, C. M. (1995). Microclimate and individual variation in pollinators: flowering plants are more than their flowers. Ecology, 76(5), 1516-1524. https://doi.org/10.2307/1938153
- Herrera, C. M. (1996). Floral traits and plant adaptation to insect pollinators: a devil’s advocate approach. In D. G. Lloyd & S. C. H. Barrett (eds.), Floral Biology: Studies on floral evolution in animal-pollinated plants (pp. 65-87). Chapman and Hall.
- Huerta-Martínez, F. M. (1995). Algunos aspectos sobre la polinización de Opuntia streptacantha Lemaire. Cactáceas y Suculentas Mexicanas, 40, 68-72.
- Ibarra-Cerdeña, C. N., Íñiguez-Dávalos, L. I., & Sánchez-Cordero, V. (2005). Pollination ecology of Stenocereus queretaroensis (Cactaceae), a chiropterophilous columnar cactus, in a tropical dry forest of Mexico. American Journal of Botany, 92(3), 503-509. https://doi.org/10.3732/ajb.92.3.503
- Instituto Nacional de Estadística y Geografía (INEGI). (2000). Carta de Climas del Estado de Durango, 1:100 000, Gómez Palacio, Dgo., México.
- Inoue, T., & Kato, M. (1992). Inter and intraspecific morphological variation in bumblebee species, and competition in flower utilization. In M. D Hunter, T. Ohgushi, & P. W. Price (eds.), Effects of resource distribution on animal-plant interactions (pp. 393-427). Academic Press.
- Johnson, R. A. (1992). Pollination and reproductive ecology of Acuña cactus, Echinomastus erectrocentrus var. acunensis (Cactaceae). International Journal of Plant Sciences, 153(3), 400-408. https://doi.org/10.1086/297044
- Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist, 129(5), 657-677. https://doi.org/10.1086/284665
- Jou, Y. J., Huang, C. C. L., & Cho, H. J. (2014). A VIF-based optimization model to alleviate collinearity problems in multiple linear regression. Computational Statistics, 29, 1515-1541. https://doi.org/10.1007/s00180-014-0504-3
- King, C., Ballantyne, G., & Willmer, P. G. (2013). Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution, 4(9), 811-818. https://doi.org/10.1111/2041-210X.12074
- Kuppler, J., & Kotowska, M. M. (2021). A meta-analysis of responses in floral traits and flower–visitor interactions to water deficit. Global Change Biology, 27(13), 3095-3108. https://doi.org/10.1111/gcb.15621
- Ladd, P. G., Yates, C. J., Dillon, R., & Palmer, R. (2019). Pollination ecology of Tetratheca species from isolated, arid habitats (Banded Iron Formations) in Western Australia. Australian Journal of Botany, 67(3), 248-255. https://doi.org/10.1071/BT18249
- Lanier, G. N., & Burns, B. W. (1978). Barometric flux. Effects on the responsiveness of bark beetles aggregation attractants. Journal of Chemical Ecology, 4, 139-147. https://doi.org/10.1007/BF00988050
- Lau, J. A., & Galloway, L. F. (2004). Effects of low-efficiency pollinators on plant fitness and floral trait evolution in Campanula americana (Campanulaceae). Oecologia, 141, 577-583. https://doi.org/10.1007/s00442-004-1677-1
- Leskey, T. C., & Prokopy, R. J. (2003). Influence of barometric pressure on odor discrimination and oviposition by adult plum curculios (Coleoptera: Curculionidae). European Journal of Entomology, 100(4), 517–520. https://doi.org/10.14411/eje.2003.079
- Li, J., & Margolies, D. C. (1994). Barometric pressure influences initiation of aerial dispersal in the twospotted spider mite. Journal of the Kansas Entomological Society, 67(4), 386-393. http://www.jstor.org/stable/25085545
- Marchand, D., & McNeil, J. N. (2000). Effects of wind speed and atmospheric pressure on mate searching behavior in the aphid parasitoid Aphidius nigripes (Hymenoptera: Aphidiidae). Journal of Insect Behavior, 13, 187-199. https://doi.org/10.1023/A:1007732113390
- Martín-González, A. M., Dalsgaard, B., Ollerton, J., Timmermann, A., Olesen, J. M., Andersen, L., & Tossas, A. G. (2009). Effects of climate on pollination networks in the West Indies. Journal of Tropical Ecology, 25(5), 493-506. https://doi.org/10.1017/S0266467409990034
- Martínez-Adriano, C. A., Díaz-Castelazo, C., & Aguirre-Jaimes, A. (2018). Flower-mediated plant-butterfly interactions in an heterogeneous tropical coastal ecosystem. PeerJ, 6, e5493. https://doi.org/10.7717/peerj.5493
- Martínez-Adriano, C. A., Romero-Méndez, U., Flores, J., Jurado, E., & Estrada-Castillón, E. (2015). Floral visitors of Astrophytum myriostigma in La Sierra El Sarnoso, Durango, México. The Southwestern Naturalist, 60(2-3), 158-165. https://doi.org/10.1894/FMO-12.1
- Martínez-Falcón, A. P., Martínez-Adriano, C. A., & Dáttilo, W. (2019). Redes complejas como herramientas para estudiar la diversidad de las interacciones ecológicas. In C. E. Moreno (Ed.), La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio (pp. 265-283). Universidad Autónoma del Estado de Hidalgo/Libermex.
- McCall, C., & Primack, R. B. (1992). Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. American Journal of Botany, 79(4), 434-442. https://doi.org/10.1002/j.1537-2197.1992.tb14571.x
- McDonald, C. J., & McPherson, G. R. (2005). Pollination of pima pineapple cactus (Coryphantha scheeri var robustispina): Does pollen flow limit abundance of this endangered species?. USDA Forest Service Proceedings RMRS-P-36, 529-532.
- https://www.fs.usda.gov/rm/pubs/rmrs_p036/rmrs_p036_529_532.pdf
- McIntosh, M. E. (2005). Pollination of two species of Ferocactus: interactions between cactus-specialist bees and their host plants. Functional Ecology, 19(4), 727-734. https://doi.org/10.1111/j.1365-2435.2005.00990.x
- Murillo, M. (1981). Aspectos de la polinización por insectos en cinco géneros de cactáceas de la zona árida del estado de Querétaro. Folia Entomológica Mexicana, 48, 35-36.
- Muro-Pérez, G., Romero-Méndez, U., Flores-Rivas, J. D., & Sánchez-Salas, J. (2009). Algunos aspectos sobre el nodrizaje en Astrophytum myriostigma Lem. (1839) (Cactae: Cactaceae), en la Sierra El Sarnoso, Durango, México. Boletín Nakari, 20, 43-48.
- Naimi, B. (2015). usdm: uncertainty analysis for species distribution models, R package version 1. https://CRAN.R-project.org/package=usdm
- Olesen, J. M., & Jordano, P. (2002). Geographic patterns in plant-pollinator mutualistic networks. Ecology, 83(9), 2416-2424. https://doi.org/10.1890/0012-9658(2002)083[2416:GPIPPM]2.0.CO;2
- Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19891-19896. https://doi.org/10.1073/pnas.0706375104
- Quinn, G. G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge University Press.
- R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/
- Radmacher, S., & Strohm, E. (2011). Effects of constant and fluctuating temperatures on the development of the solitary bee Osmia bicornis (Hymenoptera: Megachilidae). Apidologie, 42, 711-720. https://doi.org/10.1007/s13592-011-0078-9
- Ramos-Robles, M., Andresen, E., & Díaz-Castelazo, C. (2016). Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability. PeerJ, 4, e2048. https://doi.org/10.7717/peerj.2048
- Ren, H., Yang, L., & Liu, N. (2008). Nurse plant theory and its application in ecological restoration in lower subtropics of China. Progress in Natural Science, 18(2), 137-142. https://doi.org/10.1016/j.pnsc.2007.07.008
- Rico-Gray, V., Díaz-Castelazo, C., Ramírez-Hernández, A., Guimarães, P. R., & Holland, J. N. (2012). Abiotic factors shape temporal variation in the structure of an ant–plant network. Arthropod-Plant Interactions, 6, 289-295. https://doi.org/10.1007/s11829-011-9170-3
- Robinson, K. M., Hauzy, C., Loeuille, N., & Albrectsen, B. R. (2015). Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks. Ecology and Evolution, 5(14), 2898-2915. https://doi.org/10.1002/ece3.1559
- Roitberg, B. D., Sircom, J., Roitberg, C. A., van Alphen, J. J. M., & Mangel, M. (1993). Life expectancy and reproduction. Nature, 364, 108. https://doi.org/10.1038/364108a0
- Romero-Méndez, U., López-Corrujedo, H., García-de la Peña, C., & Estrada-Rodríguez, J. L. (2013). Variación ecomorfológica de Astrophytum myriostigma (Caryophylalles: Cactaceae) en una población de la sierra El Sarnoso, Durango, México. Revista Chilena de Historia Natural, 86(3), 357-364. http://dx.doi.org/10.4067/S0716-078X2013000300012
- Rzedowski, J. (1962). Contribuciones a la fitogeografía florística e histórica de México. I. Algunas consideraciones acerca del elemento endémico en la flora mexicana. Botanical Sciences, (27), 52-65. http://dx.doi.org/10.17129/botsci.1077
- Rzedowski, J. (1986). La vegetación de México (Tercera Edición). LIMUSA.
- Sánchez-Lafuente, A. M. (2002). Floral variation in the generalist perennial herb Paeonia broteroi (Paeoniaceae): differences between regions with different pollinators and herbivores. American Journal of Botany, 89(8), 1260-1269. https://doi.org/10.3732/ajb.89.8.1260
- Sánchez-Reyes, U. J., Niño-Maldonado, S., Barrientos-Lozano, L., & Sandoval-Becerra, F. (2016). Influencia del clima en la distribución de Chrysomelidae (Coleoptera) en el Cañón de la Peregrina, Tamaulipas, México. Entomología Mexicana, 3, 467-473.
- Sánchez-Salas, J., Muro-Pérez, G., & Romero-Méndez, U. (2004). Sierra El Sarnoso: cactáceas, guía de campo. Escuela Superior de Biología, Universidad Juárez del Estado de Durango.
- Sandoval-Becerra, F. M., Niño-Maldonado, S., Sánchez-Reyes, U. J., Horta-Vega, J. V., Venegas-Barrera, C. S., & Martínez-Sánchez, I. (2017). Respuesta de la comunidad de Chrysomelidae (Coleoptera) a la variación microclimática en un fragmento de bosque de encino del noreste de México. Entomología Mexicana, 4, 421-427.
- Scaven, V. L., & Rafferty, N. E. (2013). Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Current Zoology, 59(3), 418-426. https://doi.org/10.1093/czoolo/59.3.418
- Diario Oficial de la Federación (DOF). (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental-especies nativas de México de flora y fauna silvestres-categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Secretaría del Medio Ambiente y Recursos Naturales (Semarnat). https://dof.gob.mx/nota_detalle_popup.php?codigo=5173091
- Settele, J., Bishop, J., & Potts, S. G. (2016). Climate change impacts on pollination. Nature Plants, 2, 16092. https://doi.org/10.1038/nplants.2016.92
- Slavković, F., Greenberg, A., Sadowsky, A., Zemach, H., Ish-Shalom, M., Kamenetsky, R., & Cohen, Y. (2016). Effects of applying variable temperature conditions around inflorescences on fertilization and fruit set in date palms. Scientia Horticulturae, 202, 83-90. https://doi.org/10.1016/j.scienta.2016.02.030
- Steinberg, S., Dicke, M., Vet, L. E. M., & Wanningen, R. (1992). Response of the braconid parasitoid Cotesia (= Apanteles) glomerata to volatile infochemicals: effects of bioassay set‐up, parasitoid age and experience and barometric flux. Entomologia Experimentalis et Applicata, 63(2), 163-175. https://doi.org/10.1111/j.1570-7458.1992.tb01571.x
- Strong, A. W., & Williamson, P. S. (2007). Breeding system of Astrophytum asterias: an endangered cactus. The Southwestern Naturalist, 52(3), 241-346. https://doi.org/10.1894/0038-4909(2007)52[341:BSOAAA]2.0.CO;2
- Tangmitcharoen, S., & Owens, J. N. (1997). Floral biology, pollination, pistil receptivity, and pollen tube growth of teak (Tectona grandis Linn f.). Annals of Botany, 79(3), 227-241. https://doi.org/10.1006/anbo.1996.0317
- Tasen, W., Ogata, K., Miyajima, I., & Pianhanuruk, P. (2010). The effect of microclimate factors to floral traits on flowering season in teak (Tectona grandis) seed plantations, Thailand. Advances in Bioresearch, 1(1), 137-143.
- Tasen, W., Jaitrong, W., Sittichaya, W., & Ogata, K. (2014). Relationships among insect pollinators, micro-environmental factors and fruit settings of teak (Tectona grandis LF) in seed orchards in Thailand. Thai Journal of Forestry, 33, 96-108.
- Tenorio-Escandón, P., Ramírez-Hernández, A., Flores, J., Juan-Vicedo, J., & Martínez-Falcón, A. P. (2022) A systematic review on Opuntia (Cactaceae; Opuntioideae) flower-visiting insects in the world with emphasis on Mexico: implications for biodiversity conservation. Plants, 11(1), 131. https://doi.org/10.3390/plants11010131
- Totland, Ø. (2001). Environment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology, 82(8), 2233-2244. https://doi.org/10.1890/0012-9658(2001)082[2233:EDPLAS]2.0.CO;2
- US Department of Transportation and Federal Aviation Administration. (2008). Instrument flying book. United States Department of Transportation, Federal Aviation Administration, Airman Standards Branch.
- Vanbergen, A. J. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251-259. https://doi.org/10.1890/120126
- Vázquez, D. P., Melian, C. J., Williams, N. M., Blüthgen, N., Krasnov, B. R., & Poulin, R. (2007), Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116(7), 1120-1127. https://doi.org/10.1111/j.0030-1299.2007.15828.x
- Wang, X., Liu, H., Li, X., Song, Y., Chen, L., & Jin, L. (2009). Correlations between environmental factors and wild bee behavior on alfalfa (Medicago sativa) in Northwestern China. Environmental Entomology, 38(5), 1480-1484. https://doi.org/10.1603/022.038.0516
- Welti, E. A. R., & Joern, A. (2015). Structure of trophic and mutualistic networks across broad environmental gradients. Ecology and Evolution, 5(2), 326-334. https://doi.org/10.1002/ece3.1371
- Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer.
- Withgott, J. (2000). Botanical nursing: from deserts to shorelines, nurse effects are receiving renewed attention. BioScience, 50(6), 479-484. https://doi.org/10.1641/0006-3568(2000)050[0479:BN]2.0.CO;2