Resumen
Las lipasas son enzimas atractivas para su uso en biotecnología, principalmente aquellas producidas por extremófilos. Recientemente fueron aisladas bacterias termófilas Geobacillus en aguas geotermales del lago del cráter del volcán “El Chichón”, en México. En este trabajo se caracterizó y optimizó la actividad lipolítica de la cepa Geobacillus stearothermophilus CHI1. Esta cepa fue capaz de producir enzimas con máxima actividad lipolítica a 60 °C y 80 °C, con valores de pH de 5, 9 y 11, además de que demostró ser tolerante a solventes y capaz de realizar catálisis independientemente de iones metálicos. Adicionalemente, mostró mayor afinidad hacia sustratos de cadena media. Los resultados de la caracterización y optimización bioquímica sugieren la presencia de más de un tipo de actividad lipolítica presente en Geobacillus stearothermophilus CHI1. Todas estas características hacen que estas enzimas sean atractivas en procesos biotecnológicos a altas temperaturas y pH alcalino (por ejemplo, aditivos detergentes), así como para ayudar a comprender su utilidad biológica en Geobacillus.
Citas
Adetunji, A. I., & Olaniran, A. O. (2021). Production strategies and biotechnological relevance of microbial lipases: a review. Brazilian Journal Microbiology, 52, 1257–1269. https://doi.org/10.1007/s42770-021-00503-5
Adrio, J. L., & Demain, A. L. (2014). Microbial enzymes: tools for biotechnological processes. Biomolecules, 4(1), 117–139. https://doi.org/10.3390/biom4010117
Barik, A., Sen, S. K., Rajhans, G., & Raut, S. (2022). Purification and optimization of extracellular lipase from a novel strain Kocuria flava Y4. International Journal of Analytical Chemistry, 2022, 1–10. https://doi.org/10.1155/2022/6403090
Behera, A. R., Veluppal, A., & Dutta, K. (2019). Optimization of physical parameters for enhanced production of lipase from Staphylococcus hominins using response surface methodology. Environmental Science and Pollution Research, 26, 34277–34284. https://doi.org/10.1007/s11356-019-04304-0
Berekaa, M. M., Zaghloul, T. I., Abdel-Fattah, Y. R., Saeed, H. M., & Sifour, M. (2009). Production of a novel glycerol-inducible lipase from thermophilic Geobacillus stearothermophilus strain-5. World Journal of Microbiology and Biotechnology, 25, 287–294. https://doi.org/10.1007/s11274-008-9891-3
Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G., & Oliart, R. (2005). Screening, purification, and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology, 37, 648–654. https://doi.org/10.1016/j.enzmictec.2005.06.003
Christopher, L. P., Zambare, V. P., Zambare, A., Kumar, H., & Malek, L. (2015). A thermo-alkaline lipase from a new thermophile Geobacillus thermodenitrificans AV-5 with potential application in biodiesel production. Journal of Chemical Technology & Biotechnology, 90, 2007–2016. https://doi.org/10.1002/jctb.4678
Dako, E., Bernier, A. M., Dadie, A. T., & Jankowski, C. K. (2012). The problems associated with enzyme purification. In D. Ekinci (ed.), Chemical Biology (pp. 19-40). Intech. https://doi.org/10.5772/33307
Eggert, T., van Pouderoyen, G., Dijkstra, B. W., & Jaeger, K. E. (2001). Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Letters, 502, 89–92. https://doi.org/10.1016/S0014-5793(01)02665-5
Eggert, T., Brockmeier, U., Droge, M. J., Quax, W. J., & Jaeger, K. E. (2003). Extracellular lipases from Bacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiology Letters, 225, 319–324. https://doi.org/10.1016/S0378-1097(03)00536-6
Ekinci, A. P., Dinçer, B., Baltaş, N., & Adıgüzel, A. (2016). Partial purification and characterization of lipase from Geobacillus stearothermophilus AH22. Journal of Enzyme Inhibition and Medical Chemistry, 31, 325–331. https://doi.org/10.3109/14756366.2015.1024677
Gamboa-Melendez, H., Larroude, M., Park, Y. K., Trebul, P., Nicaud, J. M., & Ledesma-Amaro, R. (2018). Synthetic biology to improve the production of lipases and esterases (Review). Methods in Molecular Biology, 1835, 229-242. https://doi.org/10.1007/978-1-4939-8672-9_13
Godoy, C. A., Pardo-Tamayo, J. S., & Barbosa, O. (2022). Microbial lipases and their potential in the production of pharmaceutical building blocks. International Journal of Molecular Science, 23, 9933.
https://doi.org/10.3390/ijms23179933
Lajis, A. F. B. (2018). Realm of thermoalkaline lipases in bioprocess commodities. Journal of Lipids, 2018, 1–22. https://doi.org/10.1155/2018/5659683
Leow, T. C., Rahman, R. N. Z. R. A., Basri, M., & Salleh, A. B. (2007). A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles, 11, 527–535. https://doi.org/10.1007/s00792-007-0069-y
Li, H., & Zhang, X. (2005). Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1. Protein Expression and Purification, 42(1), 153–159. https://doi.org/10.1016/j.pep.2005.03.011
Lim, S. Y., Steiner, J. M., & Cridge, H. (2022). Lipases: It's not just pancreatic lipase!. American Journal of Veterinary Research, 83(8), 1-8. https://doi.org/10.2460/ajvr.22.03.0048
Mahfoudhi, A., Benmabrouk, S., Fendri, A., & Sayari, A. (2022). Fungal lipases as biocatalysts: a promising platform in several industrial biotechnology applications. Biotechnology and Bioengineering, 119(12), 3370-3392. https://doi.org/10.1002/bit.28245
Oliart-Ros, R. M., Badillo-Zeferino, G. L., Quintana-Castro, R., Ruíz-López, I. I., Alexander-Aguilera, A., Domínguez-Chávez, J. G., Khan, A. A., Nguyen, D. D., Nadda, A. K., & Sánchez-Otero, M. G. (2021). Production and characterization of cross-linked aggregates of Geobacillus thermoleovorans CCR11 thermoalkaliphilic recombinant lipase. Molecules, 26(24), 7569. https://doi.org/10.3390/molecules26247569
Ovando-Chacon, S. L., Tacias-Pascacio, V. G., Ovando-Chacon, G. E., Rosales-Quintero, A., Rodriguez-Leon, A., Ruiz-Valdiviezo, V. M., & Servin-Martinez, A. (2020). Characterization of thermophilic microorganisms in the geothermal water flow of El Chichón volcano crater lake. Water, 12, 2172. https://doi.org/10.3390/w12082172
Pohanka, M. (2019). Biosensors and bioassays based on lipases, principles and applications, a review. Molecules, 24(3), 616. https://doi.org/10.3390/molecules24030616
Quintana-Castro, R., Díaz, P., Valerio-Alfaro, G., García, H. S., & Oliart-Ros, R. (2009). Gene cloning, expression, and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase. Molecular Biotechnology, 42, 75–83. https://doi.org/10.1007/s12033-008-9136-6
Rmili, F., Hadrich, B., Chamkha, M., Sayari, A., & Fendri, A. (2022). Optimization of organic solvent-tolerant lipase production by Staphylococcus capitis SH6. Immobilization for biodiesel production and biodegradation of waste greases. Preparative Biochemistry & Biotechnology, 52, 108–122. https://doi.org/10.1080/10826068.2021.1920034
Salihu, A., & Alam, Z. (2015). Solvent tolerant lipases: a review. Process Biochemistry, 50(1), 86–96. https://doi.org/10.1016/j.procbio.2014.10.019
Sharma, S., & Kanwar, S. S. (2014). Organic solvent tolerant lipases and applications. The Scientific World Journal, 2014, 625258. https://doi.org/10.1155/2014/625258
Sifour, M., Saeed, H. M., Zaghloul, T. I., Berekaa, M. M., & Abdel-Fatt, Y. R. (2010). Purification and properties of a lipase from thermophilic Geobacillus stearothermophilus Strain-5. International Journal of Biological Chemistry, 4(4), 203–212. https://doi.org/10.3923/ijbc.2010.203.212
Soliman, N. A., Knoll, M., Abdel-Fattah, Y. R., Schmid, R. D., & Lange, S. (2007). Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem, 42(7), 1090–1100. https://doi.org/10.1016/j.procbio.2007.05.005
Vivek, K., Sandhia, G. S., & Subramaniyan, S. (2022). Extremophilic lipases for industrial applications: a general review. Biotechnology Advances, 60, 108002. https://doi.org/10.1016/j.biotechadv.2022.108002
Vorderwülbecke, T., Kieslich, K., & Erdmann, H. (1992). Comparison of lipases by different assays. Enzyme and Microbial Technology, 14(8), 631–639. https://doi.org/10.1016/0141-0229(92)90038-P