Impacto del arbolado urbano en la reducción de metales pesados: un análisis de la percepción ciudadana
Publicado 2026-02-18
Cómo citar
Derechos de autor 2026 Blanca Catalina Ramírez Hernández, Javier Eugenio García de Alba Verduzco, Paulina Beatriz Gutiérrez Martínez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Resumen
Los árboles urbanos son importantes para reducir la contaminación atmosférica por metales pesados. En este estudio se evaluó la capacidad de tres especies de árboles para reducir metales pesados atmosféricos y se analizó la percepción ciudadana y el consenso cultural de habitantes del municipio de Guadalajara sobre la acumulación de metales pesados en las hojas de los árboles urbanos. Los resultados muestran que las hojas de Ficus microcarpa retuvieron más cadmio (Cd) y níquel (Ni), y se observó una reducción del 30% de todos los metales analizados con el lavado de las hojas. Los datos de percepción revelan diferencias según la edad y la escolaridad, pero resalta que el 52% de los participantes consideran que los metales pesados se acumulan en las hojas de los árboles. Se requieren políticas basadas en datos para mitigar la contaminación atmosférica; además, de integrar las percepciones de los ciudadanos en la planificación urbana.
Citas
- Al-Shidi, H. K., Ambusaidi, A. K., & Sulaiman, H. (2021). Public awareness, perceptions and attitudes on air pollution and its health effects in Muscat, Oman. Journal of the Air & Waste Management Association, 71(9), 1159-1174. https://doi.org/10.1080/10962247.2021.1930287
- Anderson, M. J., Gorely, R. N., & Clarke, K. R. (2008). PERMANOVA+ Primer: Guide to Software and Statistical Methods. PRIMER-E Ltd.
- Assi, M. A., Hezmee, M. N. M., Haron, A. W., Sabri, M. Y. M., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9(6), 660-671. https://doi.org/10.14202/vetworld.2016.660-671
- Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
- Cao, Z., Yu, G., Chen, Y., Cao, Q., Fiedler, H., Deng, S., Huang, J., & Wang, B. (2012). Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environment International, 49, 24-30. https://doi.org/10.1016/j.envint.2012.08.010
- Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User Manual/Tutorial. PRIMER.
- Cobbina, S. J., Chen, Y., Zhou, Z., Wu, X., Zhao, T., Zhang, Z., Feng, W., Wang, W., Li, Q., Wu, X., & Yang, L. (2015). Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. Journal of Hazardous Materials, 294, 109-120. https://doi.org/10.1016/j.jhazmat.2015.03.057
- Collins, C. M. T., Cook-Monie, I., & Raum, S. (2019). What do people know? Ecosystem services, public perception and sustainable management of urban park trees in London, U.K. Urban Forestry & Urban Greening, 43, 126362. https://doi.org/10.1016/j.ufug.2019.06.005
- Curșeu, P. L., & Schruijer, S. G. (2017). Stakeholder diversity and the comprehensiveness of sustainability decisions: the role of collaboration and conflict. Current Opinion in Environmental Sustainability, 28, 114-120. https://doi.org/10.1016/j.cosust.2017.09.007
- Cuya, A., Glikman, J. A., Groenendijk, J., Macdonald, D. W., Swaisgood, R. R., & Barocas, A. (2021). Socio-environmental perceptions and barriers to conservation engagement among artisanal small-scale gold mining communities in Southeastern Peru. Global Ecology and Conservation, 31, e01816. https://doi.org/10.1016/j.gecco.2021.e01816
- Fang, T., Jiang, T., Yang, K., Li, J., Liang, Y., Zhao, X., Gao, N., Li, H., Lu, W., & Cui, K. (2021). Biomonitoring of heavy metal contamination with roadside trees from metropolitan area of Hefei, China. Environmental Monitoring and Assessment, 193, 151. https://doi.org/10.1007/s10661-021-08926-1
- Ferrini, F., Fini, A., Mori, J., & Gori, A. (2020). Role of vegetation as a mitigating factor in the urban context. Sustainability, 12(10), 4247. https://doi.org/10.3390/su12104247
- Filipović-Trajković, R., Ilić, Z. S., Šunić, L., & Andjelković, S. (2012). The potential of different plant species for heavy metals accumulation and distribution. Journal of Food Agriculture & Environment, 10(1), 959-964.
- García-Antúnez, O., Lampinen, J., Raymond, C. M., Gulsrud, N. M., & Olafsson, A. S. (2023). Unpacking public perceptions of carbon sequestration and storage in urban greenery: implications for the social acceptability of carbon-oriented nature-based solutions. Nature-Based Solutions, 4, 100087. https://doi.org/10.1016/j.nbsj.2023.100087
- Guarino, F., Improta, G., Triassi, M., Castiglione, S., & Cicatelli, A. (2021). Air quality biomonitoring through Olea europaea L.: the study case of “Land of pyres”. Chemosphere, 282, 31052. https://doi.org/10.1016/j.chemosphere.2021.131052
- He, L., Wang, S., Liu, M., Chen, Z., Xu, J., & Dong, Y. (2023). Transport and transformation of atmospheric metals in ecosystems: a review. Journal of Hazardous Materials Advances, 9, 100218. https://doi.org/10.1016/j.hazadv.2022.100218
- Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, P. (2014). Metodología de la investigación (6ta ed.). Mc Graw Hill.
- Islam, M., Rana, M. P., & Ahmed, R. (2013). Environmental perception during rapid population growth and urbanization: a case study of Dhaka city. Environment, Development and Sustainability, 16(2), 443-453. https://doi.org/10.1007/s10668-013-9486-5
- Karmakar, D., & Padhy, P. K. (2019). Air pollution tolerance, anticipated performance, and metal accumulation indices of plant species for greenbelt development in urban industrial area. Chemosphere, 237, 124522. https://doi.org/10.1016/j.chemosphere.2019.124522
- Kumar, A., Kumar, P., Singh, H., & Kumar, N. (2021). Adaptation and mitigation potential of roadside trees with bio-extraction of heavy metals under vehicular emissions and their impact on physiological traits during seasonal regimes. Urban Forestry & Urban Greening, 58, 126900. https://doi.org/10.1016/j.ufug.2020.126900
- Li, P., Yu, J., Bi, C., Yue, J., Li, Q., Wang, L., Liu, J., Xiao, Z., Guo, L., & Huang, B. (2019). Health risk assessment for highway toll station workers exposed to PM2.5-bound heavy metals. Atmospheric Pollution Research, 10(4), 1024-1030. https://doi.org/10.1016/j.apr.2019.01.011
- Liu, H., Liu, H., & Cheng, Y. (2022). Illustrating the multi-stakeholder perceptions of environmental pollution based on big data: lessons from China. Regional Sustainability, 3(1), 12-26. https://doi.org/10.1016/j.regsus.2022.03.003
- Marques, V., Ursi, S., Lima, E., & Katon, G. (2020). Environmental perception: notes on transdisciplinary approach. Scientific Journal of Biology & Life Sciences, 1(3). https://doi.org/10.33552/sjbls.2020.01.000511
- Mayorga, C. M., Ruiz, M. E., & Aldas, D. S. (2020). Percepciones acerca de la contaminación del aire generada por el transporte urbano en Ambato, Ecuador. Revista ESPACIOS, 41(17). https://1.revistaespacios.com/a20v41n17/20411711.html
- Mebrahtu, T. F., McEachan, R. R. C., Yang, T. C., Crossley, K., Rashid, R., Hossain, R., Vaja, I., & Bryant, M. (2023). Differences in public’s perception of air quality and acceptability of a clean air zone: a mixed-methods cross sectional study. Journal of Transport & Health, 31, 101654. https://doi.org/10.1016/j.jth.2023.101654
- MohseniBandpi, A., Eslami, A., Ghaderpoori, M., Shahsavani, A., Jeihooni, A. K., Ghaderpoury, A., & Alinejad, A. (2018). Health risk assessment of heavy metals on PM2.5 in Tehran air, Iran. Data in Brief, 17, 347-355. https://doi.org/10.1016/j.dib.2018.01.018
- Mukherjee, A. G., Wanjari, U. R., Renu, K., Vellingiri, B., & Gopalakrishnan, A. V. (2022). Heavy metal and metalloid - induced reproductive toxicity. Environmental Toxicology and Pharmacology, 92, 103859. https://doi.org/10.1016/j.etap.2022.103859
- Neumayer, E. (2013). Weak versus Strong Sustainability. Elgaronline. https://doi.org/10.4337/9781781007082
- O’Cathain, A., Murphy, E., & Nicholl, J. (2007). Why, and how, mixed methods research is undertaken in health services research in England: a mixed methods study. BMC Health Services Research, 7(85). https://doi.org/10.1186/1472-6963-7-85
- Oltra, C., & Sala, R. (2016). Perception of risk from air pollution and reported behaviors: a cross-sectional survey study in four cities. Journal of Risk Research, 21(7), 869-884. https://doi.org/10.1080/13669877.2016.1264446
- Oltra, C., Sala, R., López-Asensio, S., Germán, S., & Boso, À. (2021). Individual-level determinants of the public acceptance of policy measures to improve urban air quality: the case of the Barcelona low emission zone. Sustainability, 13(3), 1168. https://doi.org/10.3390/su13031168
- Peniche-Camps, S., & Cortez-Huerta, M. (2020). La costumbre al envenenamiento: El caso de los contaminantes atmosféricos de la ciudad de Guadalajara, México. Revista de Ciencias Ambientales, 54(2), 1-19. https://doi.org/10.15359/rca.54-2.1
- Perri, G., Gargano, D., Randazzo, L., Calabrese, S., Brusca, L., Fuoco, I., Apollaro, C., & La Russa, M. F. (2024). Nature-based options for improving urban environmental quality: using black poplar trees for monitoring heavy metals pollution in urbanized contexts. Resources, 13(6), 85. https://doi.org/10.3390/resources13060085
- Ramírez, O. (2015). Identificación de problemáticas ambientales en Colombia a partir de la percepción social de estudiantes universitarios localizados en diferentes zonas del país. Revista Internacional de Contaminación Ambiental, 31(3), 293-310. https://www.scielo.org.mx/scielo.php?pid=S0188-49992015000300009&script=sci_arttext
- Saldarriaga-Noreña, H., Hernández-Mena, L., Murillo-Tovar, M., López-López, A., & Ramírez-Muñíz, M. (2011). Elemental contribution to the mass of PM2.5 in Guadalajara City, Mexico. Bulletin of Environmental Contamination and Toxicology, 86(5), 490-494. https://doi.org/10.1007/s00128-011-0240-0
- Sun, M., Li, F., Li, Y., Chen, J., & Cheng, G. (2024). Assessing the ecological and health risks associated with heavy metals in PM2.5 based on their potential bioavailability. Water Air & Soil Pollution, 235, 306. https://doi.org/10.1007/s11270-024-07118-0
- Turkyilmaz, A., Sevik, H., & Cetin, M. (2018). The use of perennial needles as biomonitors for recently accumulated heavy metals. Landscape and Ecological Engineering, 14(1), 115-120. https://doi.org/10.1007/s11355-017-0335-9
- Uka, U. N., Belford, E. J. D., & Elebe, F. A. (2021). Effects of road traffic on photosynthetic pigments and heavy metal accumulation in tree species of Kumasi Metropolis, Ghana. SN Applied Sciences, 3, 131. https://doi.org/10.1007/s42452-020-04027-9
- Wang, H., & Tassinary, L. G. (2024). Association between greenspace morphology and prevalence of non-communicable diseases mediated by air pollution and physical activity. Landscape and Urban Planning, 242, 104934. https://doi.org/10.1016/j.landurbplan.2023.104934
- Wang, S., Hu, G., Yu, R., Shen, H., & Yan, Y. (2021). Bioaccessibility and source-specific health risk of heavy metals in PM2.5 in a coastal city in China. Environmental Advances, 4, 100047. https://doi.org/10.1016/j.envadv.2021.100047
- Zhou, X., Xie, M., Zhao, M., Wang, Y., Luo, J., Lu, S., Li, J., & Liu, Q. (2023). Pollution characteristics and human health risks of PM2.5-bound heavy metals: a 3-year observation in Suzhou, China. Environmental Geochemistry and Health, 45(7), 5145-5162. https://doi.org/10.1007/s10653-023-01568-x