Evaluación de la influencia del uso de indicadores hídricos, ambientales, económicos y sociales en la estimación de la vulnerabilidad de un sistema hidrológico ante el cambio climático
Publicado 2025-12-10
Cómo citar
Derechos de autor 2025 Felipe de Jesús Ruiz Chávez, Adrián Martínez Bárcenas, Joanna Alicia Gutiérrez Pérez, Ismael Orozco Medina

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Resumen
La evaluación de la vulnerabilidad de los sistemas hidrológicos es fundamental para diseñar estrategias de mitigación frente al cambio climático; sin embargo, su cuantificación es compleja por la gran cantidad de variables involucradas. Para facilitar su cálculo se han empleado indicadores ambientales, económicos, sociales e hídricos. Dado su amplio uso, en este estudio se ha realizado un análisis de sensibilidad para evaluar la influencia de 17 indicadores en la cuantificación de la vulnerabilidad. Lo anterior se llevó a cabo utilizando el modelo MPDV1.0, que permite cuantificar la vulnerabilidad ambiental, económica, social e hídrica ante el cambio climático. Los resultados obtenidos han demostrado que seis indicadores tienen una influencia directa sobre la variabilidad de la vulnerabilidad, destacando el grado de explotación de las cuencas y el grado de explotación de los acuíferos.
Citas
- Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268-281. https://doi.org/10.1016/j.gloenvcha.2006.02.006
- Ajtai, I., Stefanie, H., Maloș, C., Botezan, C., Radovici, A., Bizau-Carstea, M., & Baciu, C. (2023). Mapping social vulnerability to floods. A comprehensive framework using a vulnerability index approach and PCA analysis. Ecological Indicators, 154, 110838. https://doi.org/10.1016/j.ecolind.2023.110838
- Armaș, I., & Albulescu, A. (2025). From static to dynamic: conceptual and operational developments of vulnerability. iScience, 28(3). https://doi.org/10.1016/j.isci.2025.112070
- Balica, S. F., Dinh, Q., & Popescu, I. (2023). Chapter 4 - Vulnerability and exposure in developed and developing countries: large-scale assessments. En J. F. Shroder, P. Paron & G. Di Baldassarre (eds.), Hazards and Disasters Series (pp. 103-143). Elsevier. https://doi.org/10.1016/B978-0-12-819101-9.00013-3
- Becker, D., Schneiderbauer, S., Forrester, J. M., & Pedoth, L. (2015). Guidelines for development of indicators, indicator systems and provide challenges. White Rose Research Online. https://eprints.whiterose.ac.uk/103026/1/24_06_2015_emBRACE_Del_3_5_final.pdf
- Birkmann, J., Jamshed, A., McMillan, J. M., Feldmeyer, D., Totin, E., Solecki, W., Ibrahim, Z. Z., Roberts, D., Kerr, R. B., Poertner, H., Pelling, M., Djalante, R., Garschagen, M., Leal, W., Guha-Sapir, D., & Alegría, A. (2022). Understanding human vulnerability to climate change: a global perspective on index validation for adaptation planning. Science of the Total Environment, 803, 150065. https://doi.org/10.1016/j.scitotenv.2021.150065
- Dong, Z., Pan, Z., An, P., Wang, L., Zhang, J., He, D., Han, H., & Pan, X. (2015). A novel method for quantitatively evaluating agricultural vulnerability to climate change. Ecological Indicators, 48, 49–54. https://doi.org/10.1016/j.ecolind.2014.07.032
- Eriksen, S. H., & Kelly, P. M. (2006). Developing credible vulnerability indicators for climate adaptation policy assessment. Mitigation and Adaptation Strategies for Global Change, 12(4), 495-524. https://doi.org/10.1007/s11027-006-3460-6
- Fekete, A., Damm, M., & Birkmann, J. (2010). Scales as a challenge for vulnerability assessment. Natural Hazards, 55, 729–747. https://doi.org/10.1007/s11069-009-9445-5
- Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226–240. https://doi.org/10.1016/j.jhydrol.2006.06.032
- Fuchs, S., Heiss, K., & Hübl, J. (2007). Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazards and Earth System Sciences, 7(5), 495-506. https://doi.org/10.5194/nhess-7-495-2007
- Gabric, A. J. (2023). The climate change crisis: a review of its causes and possible responses. Atmosphere, 14(7), 1081. https://doi.org/10.3390/atmos14071081
- Gleeson, T., Wada, Y., Bierkens, M. F. P., & Van Beek, L. P. H. (2012). Water balance of global aquifers revealed by groundwater footprint. Nature, 488(7410), 197-200. https://doi.org/10.1038/nature11295
- Gumel, D. Y. (2022). Assessing climate change vulnerability: a conceptual and theoretical review. Journal of Sustainability and Environmental Management, 1(1), 22–31. https://nepjol.info/index.php/josem/article/view/43527
- Hinkel, J. (2011). “Indicators of vulnerability and adaptive capacity”: towards a clarification of the science–policy interface. Global Environmental Change, 21(1), 198-208. https://doi.org/10.1016/j.gloenvcha.2010.08.002
- Janssen, M. A., Schoon, M. L., Ke, W., & Börner, K. (2006). Scholarly networks on resilience, vulnerability and adaptation within the human dimensions of global environmental change. Global Environmental Change, 16(3), 240-252. https://doi.org/10.1016/j.gloenvcha.2006.04.001
- Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4), 255-267. https://doi.org/10.1016/s0959-3780(03)00054-2
- Martínez, A., Herrera, M., López, J., & Orozco, I. (2023). Coupled model for assessing the present and future watershed vulnerabilities to climate change impacts. Water, 15(4), 711. https://doi.org/10.3390/w15040711
- Mitchell, J. K., Devine, N., & Jagger, K. (1989). A contextual model of natural hazard. Geographical Review, 79(4), 391-409. https://doi.org/10.2307/215114
- Monterroso, A., Fernández, A., Trejo, R. I., Conde, A. C., Escandón, J., Villers, L., & Gay, C. (2014). Vulnerabilidad y adaptación a los efectos del cambio climático en México. Universidad Autónoma de México. https://atlasclimatico.unam.mx/VyA/#6
- Neset, T., Wiréhn, L., Opach, T., Glaas, E., & Linnér, B. (2019). Evaluation of indicators for agricultural vulnerability to climate change: the case of Swedish agriculture. Ecological Indicators, 105, 571–580. https://doi.org/10.1016/j.ecolind.2018.05.042
- O’Brien, K., Sygna, L., & Haugen, J. E. (2004). Vulnerable or resilient? A multi-scale assessment of climate impacts and vulnerability in Norway. Climatic Change, 64, 193-225. https://doi.org/10.1023/b:clim.0000024668.70143.80
- Orozco, I., Martínez, A., & Ortega, V. (2020). Assessment of the water, environmental, economic and social vulnerability of a watershed to the potential effects of climate change and land use change. Water, 12(6), 1682. https://doi.org/10.3390/w12061682
- Pacheco-Treviño, S., & Manzano-Camarillo, M. G. F. (2024). Review of water scarcity assessments: highlights of Mexico's water situation. WIREs Water, 11(4), e1721. https://doi.org/10.1002/wat2.1721
- Parry, M. L., Canziani, O., Palutikof, J., van der Linden, P., & Hanson, C. (eds.) (2007). Climate Change 2007: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf
- Rhoades, A. M., Risser, M. D., Stone, D. A., Wehner, M. F., & Jones, A. D. (2021). Implications of warming on western United States landfalling atmospheric rivers and their flood damages. Weather and Climate Extremes, 32, 100326. https://doi.org/10.1016/j.wace.2021.100326
- Rossi, G., & Peres, D. J. (2023). Climatic and other global changes as current challenges in improving water systems management: lessons from the case of Italy. Water Resources Manage, 37, 2387–2402. https://doi.org/10.1007/s11269-023-03424-0
- Smit, B., & Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability. Global Environmental Change, 16(3), 282-292. https://doi.org/10.1016/j.gloenvcha.2006.03.008
- Truong, P. M., Le, N. H., Hoang, T. H. D., Nguyen, T. K. T., Nguyen, T. D., Kieu, T. K., Nguyen, T. N., Izuru, S., Le, V. H. T., Raghavan, V., Nguyen, V. L., & Tran, T. A. (2023). Climate change vulnerability assessment using GIS and fuzzy AHP on an indicator-based approach. International Journal of Geoinformatics, 19(2), 39–53. https://doi.org/10.52939/ijg.v19i2.2565
- Turner, B. L., Kasperson, R. E., Matsone, P. A., McCarthy, J. J., Corell, R. W., Christensene, L., Eckley, N., Kasperson, J. X., Luers, A., Martello, M. L., Polsky, C., Pulsipher, A., & Schiller, A. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074-8079. https://doi.org/10.1073/pnas.1231335100
- Vincent, K. (2007). Uncertainty in adaptive capacity and the importance of scale. Global Environmental Change, 17(1), 12-24. https://doi.org/10.1016/j.gloenvcha.2006.11.009
- Wehbe, C., & Baroud, H. (2024). Limitations and considerations of using composite indicators to measure vulnerability to natural hazards. Scientific Reports, 14, 19333. https://doi.org/10.1038/s41598-024-68060-z
- Wiréhn, L., Danielsson, Å., & Neset, T. S. (2015). Assessment of composite index methods for agricultural vulnerability to climate change. Journal Of Environmental Management, 156, 70-80. https://doi.org/10.1016/j.jenvman.2015.03.020
- Zhai, L., & Lee, J. (2024). Investigating vulnerability, adaptation, and resilience: a comprehensive review within the context of climate change. Atmosphere, 15(4), 474. https://doi.org/10.3390/atmos15040474