Vol. 35 (2025): Volumen 35
Artículos de Investigación

La Degradación del paracetamol con un Fotorreactor de Discos Rotatorios utilizando catalizadores de TiO2 dopado con nanopartículas metálicas: Fotorreactor de Discos Rotatorios

Carlos Montalvo Romero
UNACAR
Claudia A. Aguilar-Ucan
Universidad Autonoma del Carmen
Edith Lemus-Jauregui
Universidad Autonoma del Carmen
Rosa M Cerón-Bretón
Universidad Autonoma del Carmen
Yunuen Canedo-Lopez
Universidad Autonoma del Carmen
Marcela Rangel-Marrón
Universidad Autonoma del Carmen

Publicado 2025-08-13

Cómo citar

Montalvo Romero, C., Aguilar-Ucan, C. A., Lemus-Jauregui, E., Cerón-Bretón, R. M., Canedo-Lopez , Y., & Rangel-Marrón, M. (2025). La Degradación del paracetamol con un Fotorreactor de Discos Rotatorios utilizando catalizadores de TiO2 dopado con nanopartículas metálicas: Fotorreactor de Discos Rotatorios . Acta Universitaria, 35, 1–18. https://doi.org/10.15174/au.2025.4449

Resumen

En este trabajo se reporta el desempeño del fotorreactor de discos rotatorios (FRD) con un semiconductor TiO2 utilizado como fotocatalizador dopado con nanopartículas (NP) metálicas de hierro (Fe3+) y plata (Ag*) para la degradación de paracetamol. El fotocatalizador fue impregnado en los discos, y el dopaje con las NP de Fe3+ y Ag+ fue realizado con la técnica de fotodeposición. Los fotocatalizadores fueron caracterizados por difracción de rayos X (XRD, por sus siglas en inglés) y microscopia electrónica de barrido (SEM, por sus siglas en inglés). Los resultados mostraron que la eficiencia en la degradación del paracetamol presenta una remoción que va del 50% al 70%, lo cual es adecuado para este tipo de reactores.

Citas

  1. Ahmad, M., Rehman, W., Khan, M. M., Qureshi, M. T., Gul, A., Haq, S., Ullah, R., Rab, A., & Menaa, F. (2021). Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. Journal of Environmental Chemical Engineering, 9(1), 104725. https://doi.org/10.1016/j.jece.2020.104725
  2. Aguilar, C. A., Montalvo, C., Ceron, J. G., & Moctezuma, E. (2011). Photocatalytic Degradation of Acetaminophen. International Journal of Environmental Research, 5(4), 1071–1078. https://doi.org/10.22059/IJER.2011.465
  3. Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10, 100262. https://doi.org/10.1016/j.ceja.2022.100262
  4. Atalay, S., & Ersöz, G. (2016). Novel catalysts in advanced oxidation of organic pollutants. Springer International Publishing. https://www.springer.com/book/10.1007/978-3-319-28950-2
  5. Badvi, K., & Javanbakht, V. (2021). Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. Journal of Cleaner Production, 280(2), 124518. https://doi.org/10.1016/j.jclepro.2020.124518
  6. Basavaraju, M., Mahamood, S., Vittal, H., & Shrihari, S. (2011). A novel catalytic route to degrade paracetamol by Fenton process. International Journal of Research in Chemistry and Environment, 1(1), 157-164. https://www.researchgate.net/publication/256892237_A_novel_catalytic_route_to_degrade_paracetamol_by_Fenton_process
  7. Bello, M. M., & Raman, A. A. A. (2018). Adsorption and oxidation techniques to remove organic pollutants from water. En G. Crini & E. Lichtfouse (eds.), Green adsorbents for pollutant removal. Environmental chemistry for a sustainable world (pp. 249-300). Springer. https://doi.org/10.1007/978-3-319-92111-2_8
  8. Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Science, 22(13), 7202. https://doi.org/10.3390/ijms22137202
  9. Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22, 5711-5741. https://link.springer.com/article/10.1007%2Fs11356-014-3974-5
  10. Castilla-Caballero, D., Machuca-Martínez, F., Bustillo-Lecompte, C., & Colina-Márquez, J. (2018). Photocatalytic degradation of commercial acetaminophen: evaluation, modeling, and scaling-up of photoreactors. Catalysts, 8(5), 179. https://doi.org/10.3390/catal8050179
  11. Castro-Pastrana, L. I., Cerro-López, M., Toledo-Wall, M. L., Gómez-Oliván, L. M., & Saldívar-Santiago, M. D. (2021). Análisis de fármacos en aguas residuales de tres hospitales de la ciudad de Puebla, México. Ingeniería del Agua, 25(1), 59–73. https://doi.org/10.4995/ia.2021.13660
  12. Chakravorty, A., & Somnath, R. (2024). A review of photocatalysis, basic principles, processes, and materials. Sustainable Chemistry for the Environment, 8, 100155. https://doi.org/10.1016/j.scenv.2024.100155
  13. Chandren, S., & Rusli, R. (2022). Biosynthesis of TiO2 nanoparticles and their application as catalyst in biodiesel production. En M. Srivastava, M. A. Malik & P. K. Mishra (eds.), Green Nano Solution for Bioenergy Production Enhancement (pp. 127-168). Springer. https://doi.org/10.1007/978-981-16-9356-4_6
  14. Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12(143). https://doi.org/10.1186/s11671-017-1904-4
  15. Dodoo-Arhin, D., Asiedu, T., Agyei-Tuffour, B., Nyankson, E., Obada, D., & Mwabora, J. M. (2021). Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles. Materials Today: Proceedings, 38, 809-815. https://doi.org/10.1016/j.matpr.2020.04.597
  16. El Nemr, A., Helmy, E. T., Gomaa, E. A., Eldafrawy, S., & Mousa, M. (2019). Photocatalytic and biological activities of undoped and doped TiO2 prepared by green method for water treatment. Journal of Environmental Chemical Engineering, 7(5), 103385. https://doi.org/10.1016/j.jece.2019.103385
  17. Escobar-Alarcón, L., & Solís-Casados, D. A. (2021). Desarrollo de fotocatalizadores basados en TiO2 en forma de película delgada para la degradación de moléculas orgánicas en solución acuosa. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 14(26), 1-23. https://doi.org/10.22201/ceiich.24485691e.2021.26.69646
  18. Fateixa, S., Mulandeza, O., Nogueira, H. I. S., & Trindade, T. (2023). Raman imaging studies on the stability of Paracetamol tablets under different storage conditions. Vibrational Spectroscopy, 124, 103488. https://doi.org/10.1016/j.vibspec.2022.103488
  19. Gandra, U. R., Reddy, P. S., Salam, A., Gajagouni, S. P., Alfantazi, A., & Mohideen, M. I. H. (2024). TiO2 supported pallidum-bipyridyl complex as an efficient catalyst for Suzuki–Miyaura reaction in aqueous-ethanol. Scientific Report, 14, 7323. https://doi.org/10.1038/s41598-024-57534-9
  20. González, L. A., Chino, M. R., May, M., Iuga, C., & Martínez, S. A. (2020). Degradación fotocatalítica del paracetamol utilizando diferentes fotocalizadores del TiO2 dopados con grafeno y plata. Revista Tendencias en Docencia e Investigación en Química, 6(6), 388-394. https://hdl.handle.net/11191/7740
  21. Hasan, A. K. M. M., Dey, S. C., Rahman, M. M., Zakaria, A. M., Sarker, M., Ashaduzzaman, M. D., & Shamsuddin, S. M. D. (2020). A kaolinite/TiO2/ZnO-based novel ternary composite for photocatalytic degradation of anionic azo dyes. Bulletin of Materials Science, 43(27). https://doi.org/10.1007/s12034-019-1964-4
  22. He, B., Zhao, Q., Zeng, Z., Wang, X., & Han, S. (2015). Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core–shell catalyst for CO oxidation at low temperature. Journal of Materials Science, 50, 6339–6348. https://doi.org/10.1007/s10853-015-9181-z
  23. Hemmati, S., Nasseri, S., Mahvi, A. H., Nabizadeh, R., & Javadi, A. H. (2014). Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles. Journal of Environmental Health Science and Engineering, 12(101). https://doi.org/10.1186/2052-336X-12-101
  24. Hmoudah, M., Paparo, R., Chianese, C., El-Qanni, A., Salmi, T., Tesser, R., Russo, V., & Di Serio, M. (2025). Ibuprofen photodegradation promoted by ZnO and TiO2-P25 nanoparticles: a comprehensive kinetic, reaction mechanisms, and thermodynamic investigation. Journal of Water Process Engineering, 69, 106598. https://doi.org/10.1016/j.jwpe.2024.106598
  25. Islam, T., Jing, H., Yang, T., Zubia, E., Goos, A. G., Bernal, R. A., Botez, C. E., Narayan, M., Chan, C. K., & Noveron, J. C. (2018). Fullerene stabilized gold nanoparticle supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering, 6(4), 3827-3836. https://doi.org/10.1016/j.jece.2018.05.032
  26. Kanchanatip, E., Kiattisaksiri, P., & Neramittagapong, A. (2023). Photocatalytic treatment of real liquid effluent from hydrothermal carbonization of agricultural waste using metal doped TiO2/UV system. Journal of Environmental Science and Health, 58(3), 246-255. https://doi.org/10.1080/10934529.2023.2184156
  27. Kaur, A., Gupta, G., Ibhadon, A. O., Salunke, D. B., Sinha, A. S. K., & Kansal, S. K. (2018). A Facile synthesis of silver modified ZnO nanoplates for efficient removal of ofloxacin drug in aqueous phase under solar irradiation. Journal of Environmental Chemical Engineering, 6(3), 3621-3630. https://doi.org/10.1016/j.jece.2017.05.032
  28. Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L., & Sim, L. C. (2020). An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 27, 2522-2565. https://doi.org/10.1007/s11356-019-07193-5
  29. Kumar, S., Sharma, S. K., Kaushik, R. D., & Purohit, L. P. (2021). Chalcogen-doped zinc oxide nanoparticles for photocatalytic degradation of Rhodamine B under the irradiation of ultraviolet light. Materials Today Chemistry, 20, 100464. https://doi.org/10.1016/j.mtchem.2021.100464
  30. Marimuthu, S., Antonisamy, A. J., Malayandi, S., Rajendran, K., Tsai, P., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology B: Biology, 205, 111823. https://doi.org/10.1016/j.jphotobiol.2020.111823
  31. Mehrabadi, B. A. T., Eskandari, S., Khan, U., White, R. D., & Regalbuto, J. R. (2017). Chapter One - A review of preparation methods for supported metal catalysts. En C. Song (ed.), Advances in catalysis (pp. 1-35). Academic Press. https://doi.org/10.1016/bs.acat.2017.10.001
  32. Mikhailova, E. O. (2020). Silver nanoparticles: mechanism of action and probable bio-application. Journal of Functional Biomaterials, 11(4), 84. https://doi.org/10.3390/jfb11040084
  33. Montalvo-Romero, C. (2009). Degradación fotocatalítica de compuestos que aportan olor al agua potable y residual [Tesis doctoral]. Universidad Autónoma de San Luis Potosí.
  34. Montalvo-Romero, C., Aguilar-Ucán, C., Alcocer-De la hoz, R., Ramirez-Elias, M., & Cordova-Quiroz, V. (2018). A semi-pilot photocatalytic rotating reactor (RFR) with supported TiO2/Ag catalysts for water treatment. Molecules, 23(1), 224. https://doi.org/10.3390/molecules23010224
  35. Mosleh, S., & Mehrorang, G. (2021). Chapter 13 - Photocatalytic reactors: technological status, opportunities, and challenges for development and industrial upscaling. En M. Ghaedi (ed.), Interface science and technology (pp. 761-790). Elsevier.
  36. Munguti, L. K., Dejene, F. B., & Muthee, D. K. (2023). Zeolite Na-A supported TiO2: effects of TiO2 loading on structural, optical and adsorption properties. Materials Science and Engineering: B, 289, 116281. https://doi.org/10.1016/j.mseb.2023.116281
  37. Munnik, P., de Jongh, P. E., & de Jong, K. P. (2015). Recent developments in the synthesis of supported catalysts. Chemical Reviews, 115(14), 6687-6718. https://doi.org/10.1021/cr500486u
  38. Nguyen, T. H., Hoang, N. H., Tran, C. V., Nguyen, P. T. M., Dang, T., Chung, W. J., Chang, S. W., Nguyen, D. D., Kumar, P. S., & La, D. D. (2022). Green synthesis of a photocatalyst Ag/TiO2 nanocomposite using Cleistocalyx operculatus leaf extract for degradation of organic dyes. Chemosphere, 306, 135474. https://doi.org/10.1016/j.chemosphere.2022.135474
  39. Olama, N., Dehghani, M., & Malakootian, M. (2018). The removal of amoxicillin from aquatic solutions using the TiO2/UV C nanophotocatalytic method doped with trivalent iron. Applied Water Science, 8(97). https://doi.org/10.1007/s13201-018-0733-7
  40. Quintero-González, C. A., Martínez, J., Calva-Yáñez, J. C., & Oropeza-Guzmán, M. T. (2025). Physicochemical wastewater treatment improvement by hydrodynamic cavitation nanobubbles. Journal of Water Process Engineering, 69, 106581. https://doi.org/10.1016/j.jwpe.2024.106581
  41. Rui, Z., Wu, S., Peng, C., & Ji, H. (2014). Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion. Chemical Engineering Journal, 243, 254-264. https://doi.org/10.1016/j.cej.2014.01.010
  42. Santhi, K., Manikandan, P., Rani, C., & Karuppuchamy, S. (2015). Synthesis of nanocrystalline titanium dioxide for photodegradation treatment of remazol brown dye. Applied Nanoscience, 5, 373-378. https://doi.org/10.1007/s13204-014-0327-0
  43. Saravanan, C., Rajesh, R., Kaviarasan, T., Muthukumar, K., Kavitake, D., & Shetty, P. H. (2017). Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports, 15, 33-40. https://doi.org/10.1016/j.btre.2017.02.006
  44. Seda, T., & Hearne, G. R. (2004). Pressure induced Fe2++Ti4+ → Fe3++Ti3+ intervalence charge transfer and the Fe3+/Fe2+ ratio in natural ilmenite (FeTiO3) minerals. Journal of Physics: Condensed Matter, 16, 2707. https://doi.org/10.1088/0953-8984/16/15/021
  45. Snik, A., Larzek, M., & El Bouari, A. (2025). Innovative aqueous-phase synthesized graphene nanocomposites with nano-zerovalent copper for efficient industrial wastewater treatment. Journal of Water Process Engineering, 69, 106605. https://doi.org/10.1016/j.jwpe.2024.106605
  46. Tian, J., Zhang, Y., Qian, F., Cao, M., Cheng, Y., Li, J., Tian, M., Li, W., & Wang, L. (2023). The design of novel swash plate photocatalytic reactor with PAN/BiInOCl membrane photocatalyst for excellent RhB degradation. Journal of Alloys and Compounds, 968, 171894. https://doi.org/10.1016/j.jallcom.2023.171894
  47. Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A., Vinayagam, R., & Selvaraj, R. (2019). Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. Journal of Photochemistry and Photobiology B: Biology, 199, 111621. https://doi.org/10.1016/j.jphotobiol.2019.111621
  48. Xiao, J., Zhou, L., Jin, D., Zhou, H., Liu, D., & Zheng, B. (2024). Preparation of the Au/TiO2 catalyst for the oxidation of 2-Phenylethyl alcohol using a cacumen platycladi extract as a reducing agent. Petroleum Chemistry, 64, 322–329. https://doi.org/10.1134/S0965544124030125
  49. Zhang, Y., Jiang, W., Ren, Y., Wang, B., Liu, Y., Hua, Q., & Tang, J. (2020). Efficient photocatalytic degradation of 2-chloro-4,6-dinitroresorcinol in salty industrial wastewater using glass-supported TiO2. Korean Journal of Chemical Engineering, 37(3), 536–545. https://doi.org/10.1007/s11814-019-0448-y
  50. Zhu, C., Yue, H., Jia, J., & Rueping, M. (2020). Recent advances in nickel-catalyzed C-heteroatom cross-coupling reactions under mild conditions via facilitated reductive elimination. Angewandte Chemie International Edition, 60(33), 17810-17831. https://doi.org/10.1002/anie.202013852