La Degradación del paracetamol con un Fotorreactor de Discos Rotatorios utilizando catalizadores de TiO2 dopado con nanopartículas metálicas: Fotorreactor de Discos Rotatorios
Publicado 2025-08-13
Cómo citar
Resumen
En este trabajo se reporta el desempeño del fotorreactor de discos rotatorios (FRD) con un semiconductor TiO2 utilizado como fotocatalizador dopado con nanopartículas (NP) metálicas de hierro (Fe3+) y plata (Ag*) para la degradación de paracetamol. El fotocatalizador fue impregnado en los discos, y el dopaje con las NP de Fe3+ y Ag+ fue realizado con la técnica de fotodeposición. Los fotocatalizadores fueron caracterizados por difracción de rayos X (XRD, por sus siglas en inglés) y microscopia electrónica de barrido (SEM, por sus siglas en inglés). Los resultados mostraron que la eficiencia en la degradación del paracetamol presenta una remoción que va del 50% al 70%, lo cual es adecuado para este tipo de reactores.
Citas
- Ahmad, M., Rehman, W., Khan, M. M., Qureshi, M. T., Gul, A., Haq, S., Ullah, R., Rab, A., & Menaa, F. (2021). Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B. Journal of Environmental Chemical Engineering, 9(1), 104725. https://doi.org/10.1016/j.jece.2020.104725
- Aguilar, C. A., Montalvo, C., Ceron, J. G., & Moctezuma, E. (2011). Photocatalytic Degradation of Acetaminophen. International Journal of Environmental Research, 5(4), 1071–1078. https://doi.org/10.22059/IJER.2011.465
- Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10, 100262. https://doi.org/10.1016/j.ceja.2022.100262
- Atalay, S., & Ersöz, G. (2016). Novel catalysts in advanced oxidation of organic pollutants. Springer International Publishing. https://www.springer.com/book/10.1007/978-3-319-28950-2
- Badvi, K., & Javanbakht, V. (2021). Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. Journal of Cleaner Production, 280(2), 124518. https://doi.org/10.1016/j.jclepro.2020.124518
- Basavaraju, M., Mahamood, S., Vittal, H., & Shrihari, S. (2011). A novel catalytic route to degrade paracetamol by Fenton process. International Journal of Research in Chemistry and Environment, 1(1), 157-164. https://www.researchgate.net/publication/256892237_A_novel_catalytic_route_to_degrade_paracetamol_by_Fenton_process
- Bello, M. M., & Raman, A. A. A. (2018). Adsorption and oxidation techniques to remove organic pollutants from water. En G. Crini & E. Lichtfouse (eds.), Green adsorbents for pollutant removal. Environmental chemistry for a sustainable world (pp. 249-300). Springer. https://doi.org/10.1007/978-3-319-92111-2_8
- Bruna, T., Maldonado-Bravo, F., Jara, P., & Caro, N. (2021). Silver nanoparticles and their antibacterial applications. International Journal of Molecular Science, 22(13), 7202. https://doi.org/10.3390/ijms22137202
- Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22, 5711-5741. https://link.springer.com/article/10.1007%2Fs11356-014-3974-5
- Castilla-Caballero, D., Machuca-Martínez, F., Bustillo-Lecompte, C., & Colina-Márquez, J. (2018). Photocatalytic degradation of commercial acetaminophen: evaluation, modeling, and scaling-up of photoreactors. Catalysts, 8(5), 179. https://doi.org/10.3390/catal8050179
- Castro-Pastrana, L. I., Cerro-López, M., Toledo-Wall, M. L., Gómez-Oliván, L. M., & Saldívar-Santiago, M. D. (2021). Análisis de fármacos en aguas residuales de tres hospitales de la ciudad de Puebla, México. Ingeniería del Agua, 25(1), 59–73. https://doi.org/10.4995/ia.2021.13660
- Chakravorty, A., & Somnath, R. (2024). A review of photocatalysis, basic principles, processes, and materials. Sustainable Chemistry for the Environment, 8, 100155. https://doi.org/10.1016/j.scenv.2024.100155
- Chandren, S., & Rusli, R. (2022). Biosynthesis of TiO2 nanoparticles and their application as catalyst in biodiesel production. En M. Srivastava, M. A. Malik & P. K. Mishra (eds.), Green Nano Solution for Bioenergy Production Enhancement (pp. 127-168). Springer. https://doi.org/10.1007/978-981-16-9356-4_6
- Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Research Letters, 12(143). https://doi.org/10.1186/s11671-017-1904-4
- Dodoo-Arhin, D., Asiedu, T., Agyei-Tuffour, B., Nyankson, E., Obada, D., & Mwabora, J. M. (2021). Photocatalytic degradation of Rhodamine dyes using zinc oxide nanoparticles. Materials Today: Proceedings, 38, 809-815. https://doi.org/10.1016/j.matpr.2020.04.597
- El Nemr, A., Helmy, E. T., Gomaa, E. A., Eldafrawy, S., & Mousa, M. (2019). Photocatalytic and biological activities of undoped and doped TiO2 prepared by green method for water treatment. Journal of Environmental Chemical Engineering, 7(5), 103385. https://doi.org/10.1016/j.jece.2019.103385
- Escobar-Alarcón, L., & Solís-Casados, D. A. (2021). Desarrollo de fotocatalizadores basados en TiO2 en forma de película delgada para la degradación de moléculas orgánicas en solución acuosa. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología, 14(26), 1-23. https://doi.org/10.22201/ceiich.24485691e.2021.26.69646
- Fateixa, S., Mulandeza, O., Nogueira, H. I. S., & Trindade, T. (2023). Raman imaging studies on the stability of Paracetamol tablets under different storage conditions. Vibrational Spectroscopy, 124, 103488. https://doi.org/10.1016/j.vibspec.2022.103488
- Gandra, U. R., Reddy, P. S., Salam, A., Gajagouni, S. P., Alfantazi, A., & Mohideen, M. I. H. (2024). TiO2 supported pallidum-bipyridyl complex as an efficient catalyst for Suzuki–Miyaura reaction in aqueous-ethanol. Scientific Report, 14, 7323. https://doi.org/10.1038/s41598-024-57534-9
- González, L. A., Chino, M. R., May, M., Iuga, C., & Martínez, S. A. (2020). Degradación fotocatalítica del paracetamol utilizando diferentes fotocalizadores del TiO2 dopados con grafeno y plata. Revista Tendencias en Docencia e Investigación en Química, 6(6), 388-394. https://hdl.handle.net/11191/7740
- Hasan, A. K. M. M., Dey, S. C., Rahman, M. M., Zakaria, A. M., Sarker, M., Ashaduzzaman, M. D., & Shamsuddin, S. M. D. (2020). A kaolinite/TiO2/ZnO-based novel ternary composite for photocatalytic degradation of anionic azo dyes. Bulletin of Materials Science, 43(27). https://doi.org/10.1007/s12034-019-1964-4
- He, B., Zhao, Q., Zeng, Z., Wang, X., & Han, S. (2015). Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core–shell catalyst for CO oxidation at low temperature. Journal of Materials Science, 50, 6339–6348. https://doi.org/10.1007/s10853-015-9181-z
- Hemmati, S., Nasseri, S., Mahvi, A. H., Nabizadeh, R., & Javadi, A. H. (2014). Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles. Journal of Environmental Health Science and Engineering, 12(101). https://doi.org/10.1186/2052-336X-12-101
- Hmoudah, M., Paparo, R., Chianese, C., El-Qanni, A., Salmi, T., Tesser, R., Russo, V., & Di Serio, M. (2025). Ibuprofen photodegradation promoted by ZnO and TiO2-P25 nanoparticles: a comprehensive kinetic, reaction mechanisms, and thermodynamic investigation. Journal of Water Process Engineering, 69, 106598. https://doi.org/10.1016/j.jwpe.2024.106598
- Islam, T., Jing, H., Yang, T., Zubia, E., Goos, A. G., Bernal, R. A., Botez, C. E., Narayan, M., Chan, C. K., & Noveron, J. C. (2018). Fullerene stabilized gold nanoparticle supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering, 6(4), 3827-3836. https://doi.org/10.1016/j.jece.2018.05.032
- Kanchanatip, E., Kiattisaksiri, P., & Neramittagapong, A. (2023). Photocatalytic treatment of real liquid effluent from hydrothermal carbonization of agricultural waste using metal doped TiO2/UV system. Journal of Environmental Science and Health, 58(3), 246-255. https://doi.org/10.1080/10934529.2023.2184156
- Kaur, A., Gupta, G., Ibhadon, A. O., Salunke, D. B., Sinha, A. S. K., & Kansal, S. K. (2018). A Facile synthesis of silver modified ZnO nanoplates for efficient removal of ofloxacin drug in aqueous phase under solar irradiation. Journal of Environmental Chemical Engineering, 6(3), 3621-3630. https://doi.org/10.1016/j.jece.2017.05.032
- Koe, W. S., Lee, J. W., Chong, W. C., Pang, Y. L., & Sim, L. C. (2020). An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environmental Science and Pollution Research, 27, 2522-2565. https://doi.org/10.1007/s11356-019-07193-5
- Kumar, S., Sharma, S. K., Kaushik, R. D., & Purohit, L. P. (2021). Chalcogen-doped zinc oxide nanoparticles for photocatalytic degradation of Rhodamine B under the irradiation of ultraviolet light. Materials Today Chemistry, 20, 100464. https://doi.org/10.1016/j.mtchem.2021.100464
- Marimuthu, S., Antonisamy, A. J., Malayandi, S., Rajendran, K., Tsai, P., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology B: Biology, 205, 111823. https://doi.org/10.1016/j.jphotobiol.2020.111823
- Mehrabadi, B. A. T., Eskandari, S., Khan, U., White, R. D., & Regalbuto, J. R. (2017). Chapter One - A review of preparation methods for supported metal catalysts. En C. Song (ed.), Advances in catalysis (pp. 1-35). Academic Press. https://doi.org/10.1016/bs.acat.2017.10.001
- Mikhailova, E. O. (2020). Silver nanoparticles: mechanism of action and probable bio-application. Journal of Functional Biomaterials, 11(4), 84. https://doi.org/10.3390/jfb11040084
- Montalvo-Romero, C. (2009). Degradación fotocatalítica de compuestos que aportan olor al agua potable y residual [Tesis doctoral]. Universidad Autónoma de San Luis Potosí.
- Montalvo-Romero, C., Aguilar-Ucán, C., Alcocer-De la hoz, R., Ramirez-Elias, M., & Cordova-Quiroz, V. (2018). A semi-pilot photocatalytic rotating reactor (RFR) with supported TiO2/Ag catalysts for water treatment. Molecules, 23(1), 224. https://doi.org/10.3390/molecules23010224
- Mosleh, S., & Mehrorang, G. (2021). Chapter 13 - Photocatalytic reactors: technological status, opportunities, and challenges for development and industrial upscaling. En M. Ghaedi (ed.), Interface science and technology (pp. 761-790). Elsevier.
- Munguti, L. K., Dejene, F. B., & Muthee, D. K. (2023). Zeolite Na-A supported TiO2: effects of TiO2 loading on structural, optical and adsorption properties. Materials Science and Engineering: B, 289, 116281. https://doi.org/10.1016/j.mseb.2023.116281
- Munnik, P., de Jongh, P. E., & de Jong, K. P. (2015). Recent developments in the synthesis of supported catalysts. Chemical Reviews, 115(14), 6687-6718. https://doi.org/10.1021/cr500486u
- Nguyen, T. H., Hoang, N. H., Tran, C. V., Nguyen, P. T. M., Dang, T., Chung, W. J., Chang, S. W., Nguyen, D. D., Kumar, P. S., & La, D. D. (2022). Green synthesis of a photocatalyst Ag/TiO2 nanocomposite using Cleistocalyx operculatus leaf extract for degradation of organic dyes. Chemosphere, 306, 135474. https://doi.org/10.1016/j.chemosphere.2022.135474
- Olama, N., Dehghani, M., & Malakootian, M. (2018). The removal of amoxicillin from aquatic solutions using the TiO2/UV C nanophotocatalytic method doped with trivalent iron. Applied Water Science, 8(97). https://doi.org/10.1007/s13201-018-0733-7
- Quintero-González, C. A., Martínez, J., Calva-Yáñez, J. C., & Oropeza-Guzmán, M. T. (2025). Physicochemical wastewater treatment improvement by hydrodynamic cavitation nanobubbles. Journal of Water Process Engineering, 69, 106581. https://doi.org/10.1016/j.jwpe.2024.106581
- Rui, Z., Wu, S., Peng, C., & Ji, H. (2014). Comparison of TiO2 Degussa P25 with anatase and rutile crystalline phases for methane combustion. Chemical Engineering Journal, 243, 254-264. https://doi.org/10.1016/j.cej.2014.01.010
- Santhi, K., Manikandan, P., Rani, C., & Karuppuchamy, S. (2015). Synthesis of nanocrystalline titanium dioxide for photodegradation treatment of remazol brown dye. Applied Nanoscience, 5, 373-378. https://doi.org/10.1007/s13204-014-0327-0
- Saravanan, C., Rajesh, R., Kaviarasan, T., Muthukumar, K., Kavitake, D., & Shetty, P. H. (2017). Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnology Reports, 15, 33-40. https://doi.org/10.1016/j.btre.2017.02.006
- Seda, T., & Hearne, G. R. (2004). Pressure induced Fe2++Ti4+ → Fe3++Ti3+ intervalence charge transfer and the Fe3+/Fe2+ ratio in natural ilmenite (FeTiO3) minerals. Journal of Physics: Condensed Matter, 16, 2707. https://doi.org/10.1088/0953-8984/16/15/021
- Snik, A., Larzek, M., & El Bouari, A. (2025). Innovative aqueous-phase synthesized graphene nanocomposites with nano-zerovalent copper for efficient industrial wastewater treatment. Journal of Water Process Engineering, 69, 106605. https://doi.org/10.1016/j.jwpe.2024.106605
- Tian, J., Zhang, Y., Qian, F., Cao, M., Cheng, Y., Li, J., Tian, M., Li, W., & Wang, L. (2023). The design of novel swash plate photocatalytic reactor with PAN/BiInOCl membrane photocatalyst for excellent RhB degradation. Journal of Alloys and Compounds, 968, 171894. https://doi.org/10.1016/j.jallcom.2023.171894
- Varadavenkatesan, T., Lyubchik, E., Pai, S., Pugazhendhi, A., Vinayagam, R., & Selvaraj, R. (2019). Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. Journal of Photochemistry and Photobiology B: Biology, 199, 111621. https://doi.org/10.1016/j.jphotobiol.2019.111621
- Xiao, J., Zhou, L., Jin, D., Zhou, H., Liu, D., & Zheng, B. (2024). Preparation of the Au/TiO2 catalyst for the oxidation of 2-Phenylethyl alcohol using a cacumen platycladi extract as a reducing agent. Petroleum Chemistry, 64, 322–329. https://doi.org/10.1134/S0965544124030125
- Zhang, Y., Jiang, W., Ren, Y., Wang, B., Liu, Y., Hua, Q., & Tang, J. (2020). Efficient photocatalytic degradation of 2-chloro-4,6-dinitroresorcinol in salty industrial wastewater using glass-supported TiO2. Korean Journal of Chemical Engineering, 37(3), 536–545. https://doi.org/10.1007/s11814-019-0448-y
- Zhu, C., Yue, H., Jia, J., & Rueping, M. (2020). Recent advances in nickel-catalyzed C-heteroatom cross-coupling reactions under mild conditions via facilitated reductive elimination. Angewandte Chemie International Edition, 60(33), 17810-17831. https://doi.org/10.1002/anie.202013852