Implementación de antenas ópticas para enlaces de comunicación cuántica empleando estados coherentes débiles en el espacio libre
HTML
PDF

Archivos suplementarios

E1pdf
E1
E2pdf
E2
E3pdf
E3
E4pdf
E4
E5pdf
E5
E6pdf
E6
E7pdf
E7
E8pdf
E8
E9pdf
E9
E10pdf
E10
E11pdf
E11
E12pdf
E12
E13pdf
E13
E14pdf
E14
E15pdf
E15
E16pdf
E16
E17pdf
E17

Palabras clave

Free space optical communications
quantum communications
optical antenna
weak coherent states
Cassegrain reflector. Enlaces ópticos en espacio libre
antenas ópticas
estados coherentes débiles
enlace cuántico
telescopio tipo Cassegrain.

Cómo citar

Santos Aguilar, J., Arvizu Mondragón, A., & López Leyva, J. A. (2016). Implementación de antenas ópticas para enlaces de comunicación cuántica empleando estados coherentes débiles en el espacio libre. Acta Universitaria, 26(3), 33–49. https://doi.org/10.15174/au.2016.883

Resumen

Los sistemas de comunicación óptica clásicos en espacio libre han sido ampliamente estudiados en contraste con los sistemas cuánticos, los cuales hasta fechas relativamente recientes han ido adquiriendo gran interés para aplicaciones satelitales y distribución de llave cuántica. El adecuado diseño de los elementos que recolectan la luz en el receptor es crítico para un buen desempeño. Así, el objetivo principal del presente trabajo es presentar una metodología de diseño de antenas ópticas empleadas en comunicación cuántica. Se muestra la factibilidad y utilidad de la teoría paraxial para este diseño, permitiendo el empleo de componentes ópticos, tales como telescopios astronómicos usados en esquemas clásicos convencionales. Con la ayuda de herramientas de simulación, diseñamos una antena óptica para 1550 nm, empleando un telescopio tipo Cassegrain, y realizamos una prueba de concepto en laboratorio siendo capaces de captar tres fotones por bit validando la metodología sugerida.

https://doi.org/10.15174/au.2016.883
HTML
PDF

Citas

Ait Fares, S. & Adachi, F. (2010). Mobile and Wireless Communications Network Layer and Circuit Level Design. Publisher: InTech,


Arvizu Mondragon, A., Mendieta-Jimenez, F. J., Sánchez López, J. D., Oropeza Pérez I. & J. López Leandro, J.R. (2011). Optical communication receiver based on switched-quadrature Costas loop. Journal of Applied Research and Technology, 9(3), 443-455.


Bachor, H. A., & Ralph, T. C. (2004). A guide to experiments in Quantum Optics. Weinheim:Wiley-VCH.


Bely, P. Y. (2003). The Design and Construction of Large Optical Telescopes. Heidelberg: Springer.


Biswas, A. & Piazzolla, S. (2003). Deep-Space Optical Communications Downlink Budget from Mars: System Parameters. IPN Progress Report 42-154, 1-38.


Blandford, R. D. & Thorne, K. S.(2012). Applications of Classical Physics, California: Institute of Technology.


Born, M. & Wolf, E. (2003). Principles of Optics (7ª. ed.). Cambridge: Cambridge University Press.


Braunstein, S. L. & Van Loock, P. (2005). Quantum information with continuous variables. Reviews of Modern Physics, 77(2), 513-577


Busch, P. & Shilladay, C. (2006). Complementarity and uncertainty in Mach–Zehnder interferometry and beyond. Physics Reports,435(1),1-31.


Gallion, P. (1999). A classical corpuscular approach to optical noise. Conference on Optical Amplifiers and their Applicatiosn (OAA). 30, 2407-2413.


Gerry, C., & Knight, P. (2005). Introductory quantum optics. Cambridge University Press.


Glauber, R. J. (1963). Coherent and incoherent states of the radiation field. Physical Review, 131(6), 2766-2788.


Gobby, C., Yuan, Z.L.& Shields A. J. (2004). Quantum key distribution over 122 km of standard telecom fiber. Applied Physics Letters, 84(19), 3762 -3764.


Hecht, E. (2002). Optics, (4ª.ed.) San Francisco:Addison Wesley.


Hemmati, H. (2006). Deep Space Optical Communications. New Jersey: Wiley-Interscience.


Hirota, O. (1992). Squeezed light. Amsterdam: Elsevier.


Karafolas, N., Sodnik, Z., Perdigues, J., & Iain Mckenzie, I. (2009). Optical Communications in Space. European Space Agency. 13th International Conference on Optical Networking Design and Modeling – ONDM, Braunschweig, Germany.


Karlsson, A. (1999). Quantum cryptography-from single-photon transmission, key extraction methods to novel quantum information protocols. Institute of Electrical and Electronics Engineers Proceedings of Congress on the Evolutionary Computation, Washington DC.


Kitagawa, M., & Yamamoto, Y. (1986). Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer. Physical Review A, 34(5), 3974-3988.


Lambert, S.G. & Casey, W.L. (1994). Laser Communications in Space. Boston: Artech House.


Mendieta, F. J., Corona, M. & Arvizu, A. (1997). A coherent optical communications demonstration experiment using a self-heterodyne interferometric technique with controlled-spectral-density laser fields. Instrumentation & Development, 3(6), 29-36.


Millman, J. (1979). Microelectronics: digital and analog circuits and systems. McGraw-Hill.


Mittelstaedt, P., Prieur, A., & Schieder, R. (1987). Unsharp Particle-Wave Duality in a Photon Split-Beam Experiment. Foundations of Physics, 17(9), 891-903.


Moision, B. & Hamkins, J. (2003). Downlink Budget for Mars: Modulation and Coding. The Interplanetary Network Progress Report, 42-154,1-28. Jet Propulsion Laboratory, Pasadena, California.


Ozyazici, M. S. (2004) Increasing semiconductor laser-optical fiber coupling efficiency by introducing microlens. Optica Applicata, 34(2), 185-202.


Plank, T., Czaputa, M., Leitgeb, E., & Muhammad, S. S. (April, 2011). Wavelength Selection on FSO-Links. 5th European Conference on Antennas and Propagation, Rome, Italy.


Rana, M., Morshed, K. M., Goni, O., & Rahman, M. (November, 2007). An Improved Analysis of Performance of the Optical Fiber Communication Employing Direct and Coherent Detection Technique. National Conference on Communication and Information Security NCCIS, Dhaka, Bangladesh.


Raymer, M. G., Cooper, J., Carmichael, H. J., Beck, M., & Smithey, D. T. (1995). Ultrafast measurement of optical-field statistics by dc-balanced homodyne detection. Journal of the Optical Society of America B, 12(10), 1801-1812.


Saleh, B. E., Saleh, B. E., & Teich, M. C. (1991). Fundamentals of photonics. (vol. 22). New York: Wiley.


Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z. Kurtsiefer, C., Rarity, J. G., Zeilinger, A., & Weinfurter, H. (2007). Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km. Physical Review Letters, 98(1), 010504-1-010504-4.


Soe, M., Aung, Z. M., Naing, Z. M., & Theingi Oo, K. (March, 2009). Performance Analysis and Design Consideration of Cassegrain for Satellite Communication. International MultiConference of Engineers and Computer Scientists, I., Hong Kong.


Takesue, H., Nam, S. W., Zhang, Q., Hadfield, R. H., Honjo, Tamaki, K., & Yamamoto, Y. (2007). Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nature Photonics, 1, 343-348. doi: 10.1038/nphoton


Leonhardt, U. (2005). Measuring the Quantum State of Light (1ª.ed). Cambridge: University Press.


Vallone, G., Bacco, D., Dequal, D., Gaiarin, S., Luceri, V., Bianco, G., & Villoresi, P. (2015). Experimental Satellite Quantum Communications. Physical Review Letters, 115(4), 040502.


Van Assche, G. (2006). Quantum Cryptography and Secret-Key Distillation. Cambridge University Press.


Wang, J., Lv, J., Zhao, G., & Wang, G. (2015). Free-space laser communication system with rapid acquisition based on astronomical telescopes. Optics Express, 23(16), 20655-20667.


Weyrauch, T., Vorontsov, M. A., Gowens, J., & Bifano, T. G. (2002). Fiber coupling with adaptive optics for free-space optical communication. Proc. SPIE 4489, Free-Space Laser Communication and Laser Imaging, 4489(177), 177-184.


Yariv, A. (1997). Optical electronics in modern communications (vol. 1). Oxford: University Press.


Yong-Qi, Kok, N., Bryan, A., & Shing, O. N. (2000). Diffractive optical elements with continuous relief fabricated by focused ion beam for monomode fiber coupling. Optics Express, 7(3), 141-147.