Vol. 26 No. 3 (2016)
Artículos de Investigación

Published 2016-07-11

Keywords

  • Free space optical communications,
  • quantum communications,
  • optical antenna,
  • weak coherent states,
  • Cassegrain reflector.
  • Enlaces ópticos en espacio libre,
  • antenas ópticas,
  • estados coherentes débiles,
  • enlace cuántico,
  • telescopio tipo Cassegrain.

How to Cite

Santos Aguilar, J., Arvizu Mondragón, A., & López Leyva, J. A. (2016). Implementation of antennas for optical quantum communication links using weak coherent states in free space. Acta Universitaria, 26(3), 33–49. https://doi.org/10.15174/au.2016.883

Abstract

The classical optical communication systems in free space have been extensively studied, in contrast to quantum systems which until relatively recently have acquired great interest for satellite applications and quantum key distribution. Proper design of the elements that collect light in the receiver is critical for good performance. So, the main objective of this paper is to present an optical antennas design methodology used in quantum communications. This article shows feasibility and utility of paraxial theory use for this design which allows the use of optical components such as astronomical telescopes used in conventional classical schemes. An optical antenna for 1550 nm was designed with the help of simulation tools and a commercial Cassegrain type telescope. Also, a proof of concept in the laboratory was performed where three photons per bit were captured, validating as well the suggested methodology.

References

  1. Ait Fares, S. & Adachi, F. (2010). Mobile and Wireless Communications Network Layer and Circuit Level Design. Publisher: InTech,


  2. Arvizu Mondragon, A., Mendieta-Jimenez, F. J., Sánchez López, J. D., Oropeza Pérez I. & J. López Leandro, J.R. (2011). Optical communication receiver based on switched-quadrature Costas loop. Journal of Applied Research and Technology, 9(3), 443-455.


  3. Bachor, H. A., & Ralph, T. C. (2004). A guide to experiments in Quantum Optics. Weinheim:Wiley-VCH.


  4. Bely, P. Y. (2003). The Design and Construction of Large Optical Telescopes. Heidelberg: Springer.


  5. Biswas, A. & Piazzolla, S. (2003). Deep-Space Optical Communications Downlink Budget from Mars: System Parameters. IPN Progress Report 42-154, 1-38.


  6. Blandford, R. D. & Thorne, K. S.(2012). Applications of Classical Physics, California: Institute of Technology.


  7. Born, M. & Wolf, E. (2003). Principles of Optics (7ª. ed.). Cambridge: Cambridge University Press.


  8. Braunstein, S. L. & Van Loock, P. (2005). Quantum information with continuous variables. Reviews of Modern Physics, 77(2), 513-577


  9. Busch, P. & Shilladay, C. (2006). Complementarity and uncertainty in Mach–Zehnder interferometry and beyond. Physics Reports,435(1),1-31.


  10. Gallion, P. (1999). A classical corpuscular approach to optical noise. Conference on Optical Amplifiers and their Applicatiosn (OAA). 30, 2407-2413.


  11. Gerry, C., & Knight, P. (2005). Introductory quantum optics. Cambridge University Press.


  12. Glauber, R. J. (1963). Coherent and incoherent states of the radiation field. Physical Review, 131(6), 2766-2788.


  13. Gobby, C., Yuan, Z.L.& Shields A. J. (2004). Quantum key distribution over 122 km of standard telecom fiber. Applied Physics Letters, 84(19), 3762 -3764.


  14. Hecht, E. (2002). Optics, (4ª.ed.) San Francisco:Addison Wesley.


  15. Hemmati, H. (2006). Deep Space Optical Communications. New Jersey: Wiley-Interscience.


  16. Hirota, O. (1992). Squeezed light. Amsterdam: Elsevier.


  17. Karafolas, N., Sodnik, Z., Perdigues, J., & Iain Mckenzie, I. (2009). Optical Communications in Space. European Space Agency. 13th International Conference on Optical Networking Design and Modeling – ONDM, Braunschweig, Germany.


  18. Karlsson, A. (1999). Quantum cryptography-from single-photon transmission, key extraction methods to novel quantum information protocols. Institute of Electrical and Electronics Engineers Proceedings of Congress on the Evolutionary Computation, Washington DC.


  19. Kitagawa, M., & Yamamoto, Y. (1986). Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer. Physical Review A, 34(5), 3974-3988.


  20. Lambert, S.G. & Casey, W.L. (1994). Laser Communications in Space. Boston: Artech House.


  21. Mendieta, F. J., Corona, M. & Arvizu, A. (1997). A coherent optical communications demonstration experiment using a self-heterodyne interferometric technique with controlled-spectral-density laser fields. Instrumentation & Development, 3(6), 29-36.


  22. Millman, J. (1979). Microelectronics: digital and analog circuits and systems. McGraw-Hill.


  23. Mittelstaedt, P., Prieur, A., & Schieder, R. (1987). Unsharp Particle-Wave Duality in a Photon Split-Beam Experiment. Foundations of Physics, 17(9), 891-903.


  24. Moision, B. & Hamkins, J. (2003). Downlink Budget for Mars: Modulation and Coding. The Interplanetary Network Progress Report, 42-154,1-28. Jet Propulsion Laboratory, Pasadena, California.


  25. Ozyazici, M. S. (2004) Increasing semiconductor laser-optical fiber coupling efficiency by introducing microlens. Optica Applicata, 34(2), 185-202.


  26. Plank, T., Czaputa, M., Leitgeb, E., & Muhammad, S. S. (April, 2011). Wavelength Selection on FSO-Links. 5th European Conference on Antennas and Propagation, Rome, Italy.


  27. Rana, M., Morshed, K. M., Goni, O., & Rahman, M. (November, 2007). An Improved Analysis of Performance of the Optical Fiber Communication Employing Direct and Coherent Detection Technique. National Conference on Communication and Information Security NCCIS, Dhaka, Bangladesh.


  28. Raymer, M. G., Cooper, J., Carmichael, H. J., Beck, M., & Smithey, D. T. (1995). Ultrafast measurement of optical-field statistics by dc-balanced homodyne detection. Journal of the Optical Society of America B, 12(10), 1801-1812.


  29. Saleh, B. E., Saleh, B. E., & Teich, M. C. (1991). Fundamentals of photonics. (vol. 22). New York: Wiley.


  30. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z. Kurtsiefer, C., Rarity, J. G., Zeilinger, A., & Weinfurter, H. (2007). Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km. Physical Review Letters, 98(1), 010504-1-010504-4.


  31. Soe, M., Aung, Z. M., Naing, Z. M., & Theingi Oo, K. (March, 2009). Performance Analysis and Design Consideration of Cassegrain for Satellite Communication. International MultiConference of Engineers and Computer Scientists, I., Hong Kong.


  32. Takesue, H., Nam, S. W., Zhang, Q., Hadfield, R. H., Honjo, Tamaki, K., & Yamamoto, Y. (2007). Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nature Photonics, 1, 343-348. doi: 10.1038/nphoton


  33. Leonhardt, U. (2005). Measuring the Quantum State of Light (1ª.ed). Cambridge: University Press.


  34. Vallone, G., Bacco, D., Dequal, D., Gaiarin, S., Luceri, V., Bianco, G., & Villoresi, P. (2015). Experimental Satellite Quantum Communications. Physical Review Letters, 115(4), 040502.


  35. Van Assche, G. (2006). Quantum Cryptography and Secret-Key Distillation. Cambridge University Press.


  36. Wang, J., Lv, J., Zhao, G., & Wang, G. (2015). Free-space laser communication system with rapid acquisition based on astronomical telescopes. Optics Express, 23(16), 20655-20667.


  37. Weyrauch, T., Vorontsov, M. A., Gowens, J., & Bifano, T. G. (2002). Fiber coupling with adaptive optics for free-space optical communication. Proc. SPIE 4489, Free-Space Laser Communication and Laser Imaging, 4489(177), 177-184.


  38. Yariv, A. (1997). Optical electronics in modern communications (vol. 1). Oxford: University Press.


  39. Yong-Qi, Kok, N., Bryan, A., & Shing, O. N. (2000). Diffractive optical elements with continuous relief fabricated by focused ion beam for monomode fiber coupling. Optics Express, 7(3), 141-147.