Vol. 26 No. 3 (2016)
Artículos de Investigación

Evaluation of the efficacy of an therapeutic irradiator for irradiation of red cell concentrates, in Oaxaca, Mexico

Javier Ochoa Canales
Centro de Oncología y Radioterapia de Oaxaca
Ernesto Óscar Pérez Matos
Centro Estatal de la Transfusión Sanguínea de Oaxaca
Luis Alberto Hernández Osorio
Centro de Oncología y Radioterapia de Oaxaca
Jaime Vargas Arzola
Centro de Oncología y Radioterapia de Oaxaca
Sergio Roberto Aguilar Ruiz
Universidad Autónoma Benito Juárez de Oaxaca
Bio
Honorio Torres Aguilar
Centro de Oncología y Radioterapia de Oaxaca

Published 2016-07-11

Keywords

  • Transfusión,
  • seguridad sanguínea,
  • irradiación de sangre,
  • irradiador terapéutico.
  • Transfusion,
  • blood safety,
  • blood irradiation,
  • oncologic irradiator.

How to Cite

Ochoa Canales, J., Pérez Matos, E. Óscar, Hernández Osorio, L. A., Vargas Arzola, J., Aguilar Ruiz, S. R., & Torres Aguilar, H. (2016). Evaluation of the efficacy of an therapeutic irradiator for irradiation of red cell concentrates, in Oaxaca, Mexico. Acta Universitaria, 26(3), 87–94. https://doi.org/10.15174/au.2016.1043

Abstract

Transfusion-associated graft versus host disease (TA-GvHD) is a serious transfusion complication due to residual lymphocytes (LR by its acronym in Spanish) engraftment present in blood components. Aim of this project was to evaluate efficacy of therapeutic irradiator THERATRON® Phoenix™ (Cobalt-60) of the Oncology and Radiotherapy Center from Oaxaca, Mexico, to eliminate leukocytes proliferative capability in red cells concentrates. For this end, seven red cell concentrates were obtained from blood donors selected under national standards and they were irradiated at 2520 cGy. Various parameters to evaluate quality maintenance of red cell concentrates (hemoglobin, hematocrit, hemolysis and hyperkalemia), and effectiveness to eliminate lymphocytes proliferative capability (number, viability and lymphocytes proliferation) were quantified. Therapeutic irradiator preserved quality and increased transfusion safety of these blood components by eliminating proliferative capability of residual lymphocytes. Analysis of cost-effectiveness demonstrated its efficiency for this process. Based on these results, parameters are proposed as quality control for validation of therapeutic irradiators or X-ray devices for red cells concentrates irradiation and to spread this service throughout country with aim to reduce incidence of transfusion-associated graft versus host disease.

References

  1. Department of Health (2012). Guidelines for irradiation of blood and blood components. Blood and Tissue Resources Program. New York State, USA: New York State Council on Human Blood and Transfusion Services.


  2. Diario Oficial de la Federación (26 de octubre de 2012). NOM-253-SSA1-2012. Para la disposición de sangre humana y sus componentes con fines terapéuticos. México.


  3. Gupta, A., Bansal, D., Dass, R., & Das, A. (2004). Transfusion associated graft versus host disease. Indian Pediatrics, 41(12), 1260-1264.


  4. Khurshid, M., & Moiz, B. (2015). Pathogen Reduction Technology in Transfusion: Where Do We Stand? Journal Coll Physicians Surg Pak, 25(11), 779-80.


  5. Kopolovic, I., Ostro, J., Tsubota, H., Lin, Y., Cserti-Gazdewich, C., Messner, H., & Callum, J. (2015). A systematic review of transfusion-associated graft-versus-host disease. Blood, 123(6), 406-414.


  6. Kuriyam, M., & Carson, J. (2004). Blood transfusion risks in the intensive care unit. Critical Care Clinics, 20(2), 237-253.


  7. Naveen, K. N., Athanker, S. B., Rajoor, U., & Sindhoor, J. (2015). Transfusion Associated Graft Versus Host Disease. Indian Journal Dermatoogy., 60(3), 324.


  8. Nollet, K. E., & Holland, P. V. (2003). Toward a coalition against transfusion-associated GVHD. Transfusion, 43(12), 1655-1657.


  9. Organización Mundial de la Salud (OMS) (2001). El uso clínico de la sangre en medicina, obstetricia, pediatría y neonatología, cirugía y anestesia, trauma y quemaduras. Ginebra, Suiza: OMS.


  10. Pelszynski, M. M., Moroff, G., Luban, N. L., Taylor, B. J., & Quinones, R. R. (1994). Effect of gamma irradiation of red blood cell units on T-cell inactivation as assessed by limiting dilution analysis: implications for preventing transfusion-associated graft-versus-host disease. Blood, 83(6), 1683-1689.


  11. Scott, R. M. (2006). Technology Insight: ECP for the treatment of GvHD—can we offer selective immune control without generalized immunosuppression? Nature Clinical Practice Oncology, 3, 302-314.


  12. Secretaría de Salud (SS) (2007). Guía para el uso clínico de la sangre. México: SS.


  13. Serrano, K., Chen, D., Hansen, A. L., Levin, E., Turner, T. R., Kurach, J. D., Acker, J. P., & Devine, D. V. (2014). The effect of timing of gamma-irradiation on hemolysis and potassium release in leukoreduced red cell concentrates stored in SAGM. Vox Sang, 106(4), 379-381.


  14. Strouthidis, N. G., Francis, P. J., Stanford, M. R., Graham, E. M., Holder, G. E., & Bird, A. C. (2003). Posterior segment complications of graft versus host disease after bone marrow transplantation. British Journal of Ophthalmology, 87(11), 1421-3.


  15. Thorp, J. A., Plapp, F. V., Cohen, G. R., Yeast, J. D., O’Kell, R. T., & Stephenson, S. (1990). Hyperkalemia after irradiation of packed red blood cells: possible effects with intravascular fetal transfusion. American Journal of Obstetrics and Gynecology, 163(2), 607-609.


  16. Vamvakas, E. C., & Blajchman, M. A. (2009). Transfusion-related mortality: the ongoing risks of allogeneic blood transfusion and the available strategies for their prevention. Blood, 113(15), 3406-3417.