Development of an environmental quality index using satellite technology for sugarcane areas: the case of San Luis Potosí, México
PDF (Español (España))
XML (Español (España))

How to Cite

Pérez Medina, P., Quiroz Gaspar, Ángel de J., & Galindo Mendoza, M. G. (2023). Development of an environmental quality index using satellite technology for sugarcane areas: the case of San Luis Potosí, México. Acta Universitaria, 33, 1–19. https://doi.org/10.15174/au.2023.3780

Abstract

Satellite monitoring to generate environmental quality indices is an affordable and relevant technique to understand the impact of anthropogenic activities on the environment. Recently, its usefulness has been increased by the development of tools such as Google Earth Engine. The objective of this study is to propose an environmental quality index in areas where ecosystem services are affected by sugarcane production. Four variables were included in the design: black carbon, normalized burned area index, improved vegetation index, and soil temperature. The proposal resulted in an ordinal scale of five levels of environmental quality ranging from “very poor quality” to “very good quality”. The sugarcane area of San Luis Potosí was used as a case study for the 2021-2022 harvest. The analysis showed that air quality generally improves to “good” during the non-harvest months. It is recommended to continue experimenting with more variables and to extend the analysis period to consolidate the results.

https://doi.org/10.15174/au.2023.3780
PDF (Español (España))
XML (Español (España))

References

Agricultura Puebla (13 de noviembre de 2018). Inicia temporada de zafra en Puebla. Gobierno de México. https://www.gob.mx/agricultura/puebla/articulos/inicia-temporada-de-zafra-en-puebla?idiom=es

Boori, M. S., Choudhary, K., Paringer, R., & Kupriyanov, A. (2021). Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS. Remote Sensing Applications: Society and Environment, 23, 100530. https://doi.org/10.1016/j.rsase.2021.100530

Bové, H., Bongaerts, E., Slenders, E., Bijnens, E. M., Saenen, N. D., Gyselaers, W., Van Eyken, P., Plusquin, M., Roeffaers, M. B. J., Ameloot, M., & Nawrot, T. S. (2019). Ambient black carbon particles reach the fetal side of human placenta. Nature Communications, 10, 3866. https://doi.org/10.1038/s41467-019-11654-3

Burroughs-Peña, M. S., & Rollins, A. (2017). Environmental eposures and cardiovascular disease. Cardiology Clinics, 35(1), 71-86. https://doi.org/10.1016/j.ccl.2016.09.001

Casares-Long, J. J., Longhurst, J. W. S., & Barnes, J. (2020). Air Pollution XXVIII (Wit Transactions on Ecology and the Environment, Vol 244). WIT Press.

Cardoso, T. F., Watanabe, M. D. B., Souza, A., Chagas, M. F., Cavalett, O., Morais, E. R., Nogueira, L. A. H., Leal, M. R. L. V., Braunbeck, O. A., Cortez, L. A. B., & Bonomi, A. (2017). Economic, environmental, and social impacts of different sugarcane production systems. Biofuels, Biproducts and Biorefining, 12(1), 68-82. https://doi.org/10.1002/bbb.1829

Chaudhuri, I., Fruijtier-Pölloth, C., Ngiewih, Y., & Levy, L. (2017). Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: a critical review. Critical Reviews in Toxicology, 48(2), 143-169. https://doi.org/10.1080/10408444.2017.1391746

Comisión Ambiental de la Megalópolis. (21 de septiembre de 2018). IMECA: Índice Metropolitano de la Calidad del Aire. Gobierno de México. https://www.gob.mx/comisionambiental/articulos/imeca-indice-metropolitano-de-la-calidad-del-aire?idiom=es

Comisión Nacional para el Desarrollo Sustentable de la Caña de Azúcar (Conadesuca). (13 de octubre de 2021). 8° Informe Estadístico del Sector Agroindustrial de la Caña de Azúcar en México. Gobierno de México. https://www.gob.mx/conadesuca/es/articulos/8-informe-estadistico-del-sector-agroindustrial-de-la-cana-de-azucar-en-mexico?idiom=es

Comisión Nacional para el Desarrollo Sustentable de la Caña de Azúcar (Conadesuca). (2022). Sistema Sinfocaña. Gobierno de México. https://www.gob.mx/conadesuca/acciones-y-programas/sistema-infocana

Davis, Z., de Groh, M., & Rainham, D. G. (2022). The Canadian Environmental Quality Index (Can-EQI): Development and calculation of an index to assess spatial variation of environmental quality in Canada’s 30 largest cities. Environment International, 170, 107633. https://doi.org/10.1016/j.envint.2022.107633

de Celis, R., Jordán-López, A., & Martínez-Zavala, L. M. (2013). Efectos del fuego en las propiedades biológicas, físicas y químicas del suelo. En Grandes incêndios florestais, erosão, degradação e medidas de recuperação dos solos (pp. 145-160). António Bento Gonçalves. https://idus.us.es/handle/11441/53599

Diario Oficial de la Federación (DOF). (2012). NORMA Oficial Mexicana NOM-156-SEMARNAT-2012, Establecimiento y operación de sistemas de monitoreo de la calidad del aire. https://www.dof.gob.mx/nota_detalle.php?codigo=5259464& fecha=16/07/2012#gs c.tab=0

Dobbie, M. J., & Dail, D. (2014). Environmental Indices. Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat07691

Earth Data. (2015). MERRA-2 tavg1_2d_aer_Nx: 2d,1-Hourly,Time-averaged,Single-Level,Asimilation (Aerosol Diagnostics V5.12.4) [Conjunto de datos]. https://giovanni.gsfc.nasa.gov/giovanni/

EOS Data Analytics. (6 de enero de 2023). Vegetation indices to drive digital agri solutions. https://eos.com/blog/vegetation-indices/

EOS Data Analytics. (30 de enero de 2023). Soil temperature as a factor of crops development. https://eos.com/blog/soil-temperature/

GEASIG. (24 de mayo de 2021). Superposición Ponderada con ArcGIS. https://www.geasig.com/superposicion-ponderada-con-arcgis/

Gobierno de la Ciudad de México. (15 de diciembre de 2022). Calidad del aire. http://www.aire.cdmx.gob.mx/default.php

Instituto Nacional de Ecología y Cambio Climático (INECC). (2022). Sistema Nacional de Información de la Calidad del Aire. https://sinaica.inecc.gob.mx/index.php

IQAir. (20 de diciembre de 2022). Calidad del aire en Buenos Aires. Índice de la calidad del aire (ICA) de Buenos Aires y contaminación del aire en Argentina. https://www.iqair.com/es/argentina/buenos-aires

Janssen, N. A. H., Gerlofs-Nijland, M. E., Lanki, T., O Salonen, R., Cassee, F., Hoek, G., Fisher, P., Brunekreef, B., & Kryzanowski, M. (2012). Health effects of black carbon. World Health Organization, Regional Office for Europe. https://www.euro.who.int/__data/assets/pdf_file/0004/162535/e96541.pdf

Jian, Y., Wu, C. Y. H., & Gohlke, J. M. (2017). Effect modification by environmental quality on the association between heatwaves and mortality in Alabama, United States. International Journal of Environmental Research and Public Health, 14(10), 1143. https://doi.org/10.3390/ijerph14101143

Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116. https://doi.org/10.1071/wf07049

LAADS DAAC. (2022). Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid [Conjunto de datos]. https://ladsweb.modaps.eosdis.nasa.gov/search/

Liu, X., Zheng, M., Liu, Y., Jin, Y., Liu, J., Zhang, B., Yang, X., Wu, Y., Zhang, T., Xiang, Y., Liu, B., & Yan, C. (2022). Intercomparison of equivalent black carbon (eBC) and elemental carbon (EC) concentrations with three-year continuous measurement in Beijing, China. Environmental Research, 209, 112791. https://doi.org/10.1016/j.envres.2022.112791

Ma, H., Zeng, J., Zhang, X., Fu, P., Zheng, D., Wigneron, J. P., Chen, N., & Niyogi, D. (2021). Evaluation of six satellite- and model-based surface soil temperature datasets using global ground-based observations. Remote Sensing of Environment, 264, 112605. https://doi.org/10.1016/j.rse.2021.112605

Mancini, S., Guida, M., Graziuso, G., Quartieri, J., & Guarnaccia, C. (2020). Development of an environmental quality index to assess physical agents pollution. Journal of Physics: Conference Series, 1603(1), 012005. https://doi.org/10.1088/1742-6596/1603/1/012005

Messer, L. C., Jagai, J. S., Rappazzo, K. M., & Lobdell, D. T. (2014). Construction of an environmental quality index for public health research. Environmental Health, 13(1). https://doi.org/10.1186/1476-069x-13-39

Moitinho, M. R., Ferraudo, A. S., Panosso, A. R., Da Silva Bicalho, E., De Bortoli Teixeira, D., De Andrade Barbosa, M., Tsai, S. M., Borges, B. M. F., De Souza Cannavan, F., De Souza, J. A. M., & La Scala, N. (2021). Effects of burned and unburned sugarcane harvesting systems on soil CO2 emission and soil physical, chemical, and microbiological attributes. Catena, 196, 104903. https://doi.org/10.1016/j.catena.2020.104903

Mordukhovich, I., Wilker, E., Suh, H., Wright, R., Sparrow, D., Vokonas, P. S., & Schwartz, J. (2009). Black carbon exposure, oxidative stress genes, and blood pressure in a repeated-measures study. Environmental Health Perspectives, 117(11), 1767-1772. https://doi.org/10.1289/ehp.0900591

National Aeronautics and Space Administration (NASA). (2022a). Earth data. Giovanni: the bridge between data and science v 4.38. https://giovanni.gsfc.nasa.gov/giovanni/

National Aeronautics and Space Administration (NASA). (2022b). Earth data. GES DISC. https://daac.gsfc.nasa.gov/datasets?page=1&measurement=Black%20Carbon

Observatorio Ambiental de Cartagena de Indias. (2015). Índice de la calidad del aire. https://observatorio.epacartagena.gov.co/gestion-ambiental/calidad-ambiental/sistema-urbano/indice-de-la-calidad-del-aire/

Oliveira, L. M. L., & Rodrigues, J. J. P. C. (2011). Wireless sensor networks: a Survey on environmental monitoring. Journal of Communications, 6(2), 143-151. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=c2a96d4cf3738470a7ac59af44d5274806b62362

Onwuka, B., & Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Advances in Plants & Agriculture Research, 8(1), 34-37. https://doi.org/10.15406/apar.2018.08.00288

Organismo de Evaluación y Fiscalización Ambiental (OEFA). (3 de junio de 2017). Monitoreo ambiental. https://www.oefa.gob.pe/monitoreo-ambiental-2/ocac02/

Paunescu, A. C., Casas, M., Ferrero, A., Pañella, P., Bougas, N., Beydon, N., Just, J., Lezmi, G., Sunyer, J., Ballester, F., & Momas, I. (2019). Associations of black carbon with lung function and airway inflammation in schoolchildren. Environment International, 131, 104984. https://doi.org/10.1016/j.envint.2019.104984

Riad, P. H. S., Billib, M., Hassan, A. A., Salam, M. A., & El Din, M. N. (2011). Application of the overlay weighted model and boolean logic to determine the best locations for artificial recharge of groundwater. Journal of Urban and Environmental Engineering, 5(2), 57-66. https://doi.org/10.4090/juee.2011.v5n2.057066

Ruiz-Villavicencio, E., López-López, M. A., Cetina-Alcalá, V. M., & Ramírez-Guzmán, M. E. (2020). Modelación y estimación de NO2 y O3 en zonas rurales y suburbanas del Valle de México. Revista Internacional de Contaminación Ambiental, 36(3), 745-754. https://doi.org/10.20937/rica.53548

Secretaría de Medio Ambiente. (21 de diciembre de 2022). Mapa Calidad del Aire. AIRE NL.GOB.MX. http://aire.nl.gob.mx/map_calidad.html

Secretaría de Medio Ambiente y Desarrollo Territorial (Semadet). (20 de diciembre de 2022). Calidad del Aire AMG. https://aire.jalisco.gob.mx/mapaf2019

Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). (18 de abril de 2018). Calidad del aire, el desafío de las grandes urbes. Gobierno de México. https://www.gob.mx/semarnat/articulos/calidad-del-aire-el-desafio-de-las-grandes-urbes

Sharma, A. (22 de septiembre de 2020). Enhanced Vegetation Index (EVI) and its significance in agriculture monitoring. Satyukt Analytics Private Limited. https://satyukt.medium.com/enhanced-vegetation-index-evi-and-its-significance-in-agriculture-monitoring-6d9a6c3e71c0

Silva, L. T., & Mendes, J. F. G. (2012). City Noise-Air: an environmental quality index for cities. Sustainable Cities and Society, 4, 1-11. https://doi.org/10.1016/j.scs.2012.03.001

SkyWatch. (17 de Agosto de 2022). Top 9 free sources of satellite data [2022 Update]. https://skywatch.com/free-sources-of-satellite-data/

Suárez, L., Torres, C., Helmig, D., & Hueber, J. (2017). Medición y análisis del aerosol de carbono negro en el observatorio de Huancayo, Perú. Revista Boliviana de Física, 30(30), 7-15. http://www.scielo.org.bo/scielo.php?pid=S1562-38232017000100003&script=sci_arttext

Tobias, A., Karanasiou, A., Reche, C., Amato, F., Alastuey, A. y Querol, X. (2014). Effects of black carbon on respiratory health in the city of Barcelona. European Respiratory Journal, 44, 2923. https://erj.ersjournals.com/content/44/Suppl_58/2923

Unión Nacional de Cañeros, A. C. (2022). Estadística Actual: CONCLUYE ZAFRA 2021/22 [Conjunto de datos]. http://caneros.org.mx/estadistica-actual/

United Nations (UN). (2018). Normalized Burn Ratio (NBR). UN-SPIDER Knowledge Portal. https://un-spider.org/advisory-support/recommended-practices/recommended-practice-burn-severity/in-detail/normalized-burn-ratio

United States Environmental Protection Agency (EPA). (6 de junio de 2022). Environmental Quality Index (EQI). https://www.epa.gov/healthresearch/environmental-quality-index-eqi

Vian, A. L., Bredemeier, C., Silva, P. R. F. D., Santi, A. L., Silva, C. P. G. D., & Santos, F. L. D. (2018). Limites críticos de NDVI para estimativa do potencial produtivo do milho. Revista Brasileira de Milho e Sorgo, 17(1), 91. https://doi.org/10.18512/1980-6477/rbms.v17n1p91-100

Voxco. (19 de agosto de 2021). Ordinal Scale: Definition, Characteristics, & Uses. https://www.voxco.com/blog/ordinal-scale/#:~:text=The%20Ordinal%20scale%20includes%20statistical,higher%20or%20lower%20in%20scale

Wolf, M., Emerson, J., Esty, D., De Sherbinin, A., & Wendling, Z. (2022). Environmental Performance Index. EPI. https://epi.yale.edu/

Yáñez-Narváez, A. I. (24 de noviembre de 2022). Monitoreo ambiental. Economipedia. https://economipedia.com/definiciones/monitoreo-ambiental.html

Yong, M., Anderle, L., Levy, L., & McCunney, R. J. (2019). Carbon black and lung cancer mortality—A meta-regression analysis based on three occupational cohort studies. Journal of Occupational and Environmental Medicine, 61(11), 949-00. https://doi.org/10.1097/jom.0000000000001713