CellCorticalDisplastic: Educational simulator for the recovery of NMDA receptor desensitization
Published 2025-06-04
How to Cite
Abstract
The NMDA (N-methyl-D-aspartate) receptor constitutes a significant component of excitatory synapses. The presence of intractable epilepsy in some patients with cortical dysplasia (CD) underscores the relevance of histological, electrophysiological, and molecular investigations to understand the mechanisms involved. In this context, a simulator based on the work by André et al., aimed at educational objectives, has been conceived. It features a curriculum that introduces students to the topic and allows for virtual practical exercises. The simulator faithfully reproduces the recovery of desensitization in NO-CD cells, apparently normal CD cells, and cytomegalic CD cells, as evidenced in experimental records. The implemented mathematical model allowed for theoretical estimation of internal calcium concentration in the reported experiments.
References
- Akil, H., Balice-Gordon, R., Lopes, D., Koroshetz, W., Posey, S. M., Sherer, T., Sherman, S. M., & Thiels, E. (2016). Neuroscience training for the 21st Century. Neuron, 90(5), 917–926. https://doi.org/10.1016/j.neuron.2016.05.030
- Altimus, C. M., Marlin, B. J., Charalambakis, N. E., Colón-Rodriquez, A., Glover, E. J., Izbicki, P., Johnson, A., Lourenco, M. V., Makinson, R. A., McQuail, J., Obeso, I., Padilla-Coreano, N., & Wells, M. F. (2020). The next 50 years of neuroscience. Journal of Neuroscience, 40(21), 101–106. https://doi.org/10.1523/JNEUROSCI.0103-20.2020
- André, V. M., Flores-Hernández, J., Cepeda, C., Starling, A. J., Nguyen, S., Lobo, M. K., Vinters, H. V., Levine, M. S., & Mathern, G. W. (2004). NMDA receptor alterations in neurons from pediatric cortical dysplasia tissue. Cerebral Cortex, 14(6), 634–646. https://doi.org/10.1093/cercor/bhh024
- Aneja, S., & Jain, P. (2014). Refractory epilepsy in children. The Indian Journal of Pediatrics, 81, 1063–1072. https://doi.org/10.1007/s12098-014-1533-1
- Av-Ron, E., Byrne, M. J., Byrne, J. H., & Baxter, D. A. (2008). SNNAP: a tool for teaching neuroscience. Brains, Minds and Media, 3, 1–11. https://www.brains-minds-media.org/archive/1408/bmm1408.pdf
- Berkefeld, H., Fakler, B., & Schulte, U. (2010). Ca2+-activated K+ channels: from protein complexes to function. Physiological Reviews, 90(4), 1437–1459. https://doi.org/10.1152/physrev.00049.2009
- Bower, J. M., Beeman, D., Bower, J. M., & Beeman, D. (1995). Neural Modeling with GENESIS. The Book of GENESIS. http://genesis-sim.org/GENESIS/bog/bog.html
- Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge University Press. https://doi.org/10.1017/CBO9780511541612
- Cepeda, C., André, V. M., Levine, M. S., Salamon, N., Miyata, H., Vinters, H. V., & Mathern, G. W. (2006). Epileptogenesis in pediatric cortical dysplasia: the dysmature cerebral developmental hypothesis. Epilepsy & Behavior, 9(2), 219–235. https://doi.org/10.1016/j.yebeh.2006.05.012
- Cepeda, C., André, V. M., Wu, N., Yamazaki, I., Uzgil, B., Vinters, H. V., Levine, M. S., & Mathern, G. W. (2007). Immature neurons and GABA networks may contribute to epileptogenesis in pediatric cortical dysplasia. Epilepsia, 48(5), 79–85. https://doi.org/10.1111/j.1528-1167.2007.01293.x
- Cepeda, C., Hurst, R. S., Flores-Hernández, J., Hernández-Echeagaray, E., Klapstein, G. J., Boylan, M. K., Calvert, C. R., Jocoy, E. L., Nguyen, O. K., André, V. M., Vinters, H. V., Ariano, M. A., Levine, M. S., & Mathern, G. W. (2003). Morphological and electrophysiological characterization of abnormal cell types in pediatric cortical dysplasia. Journal of Neuroscience Research, 72(4), 472–486. https://doi.org/10.1002/jnr.10604
- Crino, P. B. (2015). Focal cortical dysplasia. Seminars in Neurology, 35(03), 201-208. https://doi.org/10.1055/s-0035-1552617
- Diwakar, S., Parasuram, H., Medini, C., Raman, R., Nedungadi, P., Wiertelak, E., Srivastava, S., Achuthan, K., & Nair, B. (2014). Complementing neurophysiology education for developing countries via cost-effective virtual labs: case studies and classroom scenarios. Journal of Undergraduate Neuroscience Education, 12(2), 130–139. https://pmc.ncbi.nlm.nih.gov/articles/PMC3970995/
- Fan, X., & Markram, H. (2019). A brief history of simulation neuroscience. Frontiers in Neuroinformatics, 13, 1–28. https://doi.org/10.3389/fninf.2019.00032
- García, D., Álvarez, E., González, E., & Guzmán, D. (2019). La nueva Licenciatura en Neurociencias de la UNAM: lecciones aprendidas. Investigación en Educación Médica, 8(29), 104–109. https://doi.org/10.22201/facmed.20075057e.2019.29.18104
- Gerstner, W., Sprekeler, H., & Deco, G. (2012). Theory and simulation in neuroscience. Science, 338(6103), 60–65. https://doi.org/10.1126/science.1227356
- Goldman, M. S., & Fee, M. S. (2017). Computational training for the next generation of neuroscientists. Current Opinion in Neurobiology, 46, 25–30. https://doi.org/10.1016/j.conb.2017.06.007
- Guo, H., Camargo, L. M., Yeboah, F., Digan, M. E., Niu, H., Pan, Y., Reiling, S., Soler-Llavina, G., Weihofen, W. A., Wang, H. R., Shanker, Y. G., Stams, T., & Bill, A. (2017). A NMDA-receptor calcium influx assay sensitive to stimulation by glutamate and glycine/D-serine. Scientific Reports, 7(11608), 1–13. https://doi.org/10.1038/s41598-017-11947-x
- Hernández-Carrillo, F., Campillo, M., & Sánchez-Mendiola, M. (2018). Investigación traslacional en ciencias de la salud: implicaciones educativas y retos. Investigación en Educación Médica, 7(28), 85–97. https://doi.org/10.22201/facmed.20075057e.2018.28.18146
- Herta, J., & Dorfer, C. (2019). Surgical treatment for refractory epilepsy. Journal of Neurosurgical Sciences, 63(1), 50–60. https://doi.org/10.23736/S0390-5616.18.04448-X
- Horrigan, L. A. (2018). Tackling the threshold concepts in physiology: What is the role of the laboratory class?. Advances in Physiology Education, 42(3), 507–515. https://doi.org/10.1152/advan.00123.2017
- Iacobucci, G. J., & Popescu, G. K. (2017). Resident calmodulin primes NMDA receptors for Ca2+-dependent inactivation. Biophysical Journal, 113(10), 2236–2248. https://doi.org/10.1016/j.bpj.2017.06.035
- Inglebert, Y., & Debanne, D. (2021). Calcium and spike timing-dependent plasticity. Frontiers in Cellular Neurophysiology, 15, 1–9. https://doi.org/10.3389/fncel.2021.727336
- Jahr, C. E., & Stevens, C. F. (1990a). A quantitative description of NMDA receptor-channel kinetic behavior. The Journal of Neuroscience, 10(6), 1830–1837. https://doi.org/10.1523/JNEUROSCI.10-06-01830.1990
- Jahr, C. E., & Stevens, C. F. (1990b). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. The Journal of Neuroscience, 10(9), 3178–3182. https://doi.org/10.1523/JNEUROSCI.10-09-03178.1990
- Lorenz, S., & Egelhaaf, M. (2008). Curricular integration of simulations in neuroscience. Brains, Minds & Media, 3, 1-20. https://www.brains-minds-media.org/archive/1427/bmm1427.pdf
- McDougal, R. A., Bulanova, A. S., & Lytton, W. W. (2016). Reproducibility in computational neuroscience models and simulations. IEEE Transactions on Biomedical Engineering, 63(10), 2021–2035. https://doi.org/10.1109/TBME.2016.2539602
- Meldolesi, J. (2001). Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Progress in Neurobiology, 65(3), 309–338. https://doi.org/10.1016/S0301-0082(01)00004-1
- Mohsin, S. N., Grezenko, H., Khan, S., Eshete, F. D., Shrestha, S., Kamran, M., Affaf, M., Jama, A., Gasim, R. W., Ahmad, D. Z., Yadav, I., Arif, S., K. C., A., & Khaliq, A. S. (2023). Bridging development and disruption: comprehensive insights into focal cortical dysplasia and epileptic management. Cureus, 15(9), e45996. https://doi.org/10.7759/cureus.45996
- Oprisan, S. A. (2022). Interdisciplinary curriculum for computational neuroscience at primarily undergraduate institutions. Journal of Computational Science, 61, 1–21. https://doi.org/10.1016/j.jocs.2022.101642
- Reyes-Monreal, M., Quintero-Pérez, J., Pérez-Bonilla, M. E., Reyes-Lazalde, A., & Flores-Hernández, J. (2022). Lab-NMDAR: simuladores de la electrofisiología básica del receptor NMDA. Acta Universitaria, 32, 1-23. https://doi.org/10.15174/au.2022.3597
- Reyes-Monreal, M., Quintero-Pérez, J., Pérez-Bonilla, M. E., Pérez-Escalera, M., & Reyes-Lazalde, A. (2024). Theoretical calculation of NMDA receptor desensitization and intracellular calcium determination through simulation. https://doi.org/10.30574/ijsra.2024.11.1.0020
- Sibarov, D. A., & Antonov, S. M. (2018). Calcium-dependent desensitization of NMDA receptors. Biochemistry (Moscow), 83(10), 1173–1183. https://doi.org/10.1134/S0006297918100036
- Szydlowska, K., & Tymianski, M. (2010). Calcium, ischemia and excitotoxicity. Cell Calcium, 47(2), 122–129. https://doi.org/10.1016/j.ceca.2010.01.003
- Van Vugt, B., van Kerkoerle, T., Vartak, D., & Roelfsema, P. R. (2020). The contribution of AMPA and NMDA receptors to persistent firing in the dorsolateral prefrontal cortex in working memory. Journal of Neuroscience, 40(12), 2458–2470. https://doi.org/10.1523/JNEUROSCI.2121-19.2020
- Vyklický, L. (1993). Calcium‐mediated modulation of N‐methyl‐D‐aspartate (NMDA) responses in cultured rat hippocampal neurones. The Journal of Physiology, 470(1), 575–600. https://doi.org/10.1113/jphysiol.1993.sp019876