Vol. 35 (2025): Volumen 35
Artículos de Investigación

Resistencia al esfuerzo cortante de madera sólida, laminada, densificada y reforzada con fibra de carbono

Javier Ramón Sotomayor Castellanos
Universidad Michoacana de San Nicolás de Hidalgo
Koji Adachi
Universidad Prefectoral de Akita, Japón.
Firas Hawasly
Universidad Prefectoral de Akita, Japón.

Published 2025-09-10

How to Cite

Sotomayor Castellanos, J. R., Adachi, K., & Hawasly, F. (2025). Resistencia al esfuerzo cortante de madera sólida, laminada, densificada y reforzada con fibra de carbono. Acta Universitaria, 35, 1–17. https://doi.org/10.15174/au.2025.4382

Abstract

By modifying its original structure, the mechanical properties of wood can be improved. The objective of the research was to evaluate the shear strength of solid, laminated, densified wood, and wood reinforced with carbon fiber. To compare the results of modified wood with those of solid wood, six configurations of samples of Cryptomeria japonica were prepared, and their shear strength and retention were determined.
Compared to untreated solid wood, the shear strength of densified wood increases by 11%, laminated wood by 19%, and reinforced wood by 1%. On the other hand, the shear strength of laminated and densified wood decreases by 16%, while that of densified laminated and reinforced wood decreases by 23%.  In the same sense, the apparent elastic stiffness of glulam, densified and reinforced laminated timber increases relative to that of solid wood.

References

  1. Alamsyah, E. M., Suhaya, Y., Sutrisno, Hidayat, Y., Tanaka, T., & Yamada, M. (2021). Investigation of the adhesion performance of some fast-growing wood species based on their wettability. Open Agriculture, 6(1), 392-399. https://doi.org/10.1515/opag-2021-0013
  2. American Society for Testing and Materials (ASTM). (2021). ASTM D905-08(2021). D905 Standard test method for strength properties of adhesive bonds in shear by compression loading. ASTM International. https://doi.org/10.1520/D0905-08R21
  3. Aristri, M. A., Lubis, M. A. R., Yadav, S. M., Antov, P., Papadopoulos, A. N., Pizzi, A., Fatriasari, W., Ismayati, M., & Iswanto, A. H. (2021). Recent developments in lignin- and tannin-based non-isocyanate polyurethane resins for wood adhesives. a review. Applied Sciences, 11(9), 4242. https://doi.org/10.3390/app11094242
  4. Bernaczyk, A., Wagenführ, A., Terfloth, C., Lincke, J., Krystofiak, T., & Niemz, P. (2023). Investigations into the influence of temperature on the tensile shear strength of various adhesives. Materials, 16(18), 6173. https://doi.org/10.3390/ma16186173
  5. Cabral, J. P., Kafle, B., Subhani, M., Reiner, J., & Ashraf, M. (2022). Densification of timber: a review on the process, material properties, and application. Journal of Wood Science, 68(20). https://doi.org/10.1186/s10086-022-02028-3
  6. Feujofack, B. V., & Loss, C. (2023). Experimental campaign on the mechanical properties of Canadian small clear spruce-pine-fir wood: experimental procedures, data curation, and data description. Data in Brief, 48, 109064. https://doi.org/10.1016/j.dib.2023.109064
  7. Frihart, C. R. (2009). Adhesive groups and how they relate to the durability of bonded wood. Journal of Adhesion Science and Technology, 23(4), 601–617. https://doi.org/10.1163/156856108X379137
  8. Gašparík, M., Gaff, M., Ruman, D., Záborský, V., Kasickova, V., Sikora, A., & Štícha, V. (2017). Shear bond strength of two-layered hardwood strips bonded with polyvinyl acetate and polyurethane adhesives. BioResources, 12(1), 495-513. https://doi.org/10.15376/biores.12.1.495-513
  9. Gondaliya, A., Alipoormazandarani, N., Kleiman, M., & Foster, E. J. (2023). Sustainable compressed biocomposite: review on development and novel approaches. Materials Today Communications, 35, 105846. https://doi.org/10.1016/j.mtcomm.2023.105846
  10. Guo, D., Guo, N., Fu, F., Yang, S., Li, G., & Chu, F. (2022). Preparation and mechanical failure analysis of wood-epoxy polymer composites with excellent mechanical performances. Composites Part B: Engineering, 235, 109748. https://doi.org/10.1016/j.compositesb.2022.109748
  11. Hänsel, A., Sandak, J., Sandak, A., Mai, J., & Niemz, P. (2022). Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: a review. Wood Material Science & Engineering, 17(3), 230-241. https://doi.org/10.1080/17480272.2021.1925963
  12. International Organization for Standardization (ISO). (2012). ISO 3129:2012. Wood - Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens. International Organization for Standardization. https://www.iso.org/standard/52489.html
  13. International Organization for Standardization (ISO). (2014). ISO 13061-1:2014. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 1: Determination of moisture content for physical and mechanical tests. International Organization for Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60063
  14. International Organization for Standardization (ISO). (2017). ISO 13061-2:2014/Amd 1:2017. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests - Amendment 1. International Organization for Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60064
  15. Irle, M. (2019). A review of methods to increase the flexibility of wood. Bulletin of the Transilvania University of Braşov, Series II: Forestry, Wood Industry, Agricultural Food Engineering, 12(61), 53-62. https://doi.org/10.31926/but.fwiafe.2019.12.61.2.4
  16. Kawecki, B., & Sumorek, A. (2022). Study on profitability of combining wood and CFRP into composite based on mechanical performance of bent beams. Applied Sciences, 12(20), 10304. https://doi.org/10.3390/app122010304
  17. Meethaworn, B., Srivaro, S., & Khongtong, S. (2022). High-performance adhesive joint made from densified wood. Polymers, 14(3), 515. https://doi.org/10.3390/polym14030515
  18. Nkeuwa, W. N., Zhang, J., Semple, K. E., Chen, M., Xia, Y., & Dai, C. (2022). Bamboo-based composites: a review on fundamentals and processes of bamboo bonding. Composites Part B: Engineering, 235, 109776. https://doi.org/10.1016/j.compositesb.2022.109776
  19. Saad, K., & Lengyel, A. (2022). Strengthening timber structural members with CFRP and GFRP: a state-of-the-art review. Polymers, 14(12), 2381. https://doi.org/10.3390/polym14122381
  20. Schubert, M., Panzarasa, G., & Burgert, I. (2023). Sustainability in wood products: a new perspective for handling natural diversity. Chemical Reviews, 123(5), 1889-1924. https://doi.org/10.1021/acs.chemrev.2c00360
  21. Shirmohammadi, M., & Leggate, W. (2022). Review of existing methods for evaluating adhesive bonds in timber products. En M. Gong (ed.), Engineered Wood Products for Construction. IntechOpen. https://doi.org/10.5772/intechopen.92960
  22. Slabohm, M., Mai, C., & Militz, H. (2022). Bonding acetylated veneer for engineered wood products-a review. Materials, 15(10), 3665. https://doi.org/10.3390/ma15103665
  23. Sotomayor-Castellanos, J. R. (2017). Densificado higro-termo-mecánico de madera de Gyrocarpus americanus. Evaluación por ultrasonido. Revista de Investigaciones Agropecuarias, 43(2), 156-164. https://repositorio.inta.gob.ar/xmlui/bitstream/handle/20.500.12123/15004/RIA_2017_VOLUMEN43_N%c2%ba2_p.156-164.pdf?sequence=1&isAllowed=y
  24. Sotomayor-Castellanos, J. R., Hadachi, K., & Kudo, K. (2024). Indicadores de flexibilidad de madera laminada, densificada y reforzada con fibra de carbono. Ciencia Nicolaita, 90, 143-156. https://doi.org/10.35830/cn.vi90.782
  25. Steiger, R., Gehri, E., & Richter, K. (2010). Quality control of glulam: shear testing of bondlines. European Journal of Wood Products, 68, 243-256. https://doi.org/10.1007/s00107-010-0456-4
  26. Svoboda, T., Sikora, A., Záborský, V., & Gaffová, Z. (2019). Laminated veneer lumber with non-wood components and the effects of selected factors on its bendability. Forests, 10(6), 470. https://doi.org/10.3390/f10060470
  27. Vivian, M. A., Modes, K. S., Fogliatto, M. M., Schlichting, R. C., Corrêa, R., Grosskopf, É. J., & Dobner Júnior, M. (2023). Propriedades físicas, químicas e anatômicas da madeira de Cryptomeria japonica. Brazilian Journal of Forestry Research, 43, 1-10. https://doi.org/10.4336/2023.pfb.43e202002096