Vol. 35 (2025): Volumen 35
Artículos de Investigación

Resistencia al esfuerzo cortante de madera sólida, laminada, densificada y reforzada con fibra de carbono

Javier Ramón Sotomayor Castellanos
Universidad Michoacana de San Nicolás de Hidalgo
Koji Adachi
Universidad Prefectoral de Akita, Japón.
Firas Hawasly
Universidad Prefectoral de Akita, Japón.

Publicado 2025-09-10

Cómo citar

Sotomayor Castellanos, J. R., Adachi, K., & Hawasly, F. (2025). Resistencia al esfuerzo cortante de madera sólida, laminada, densificada y reforzada con fibra de carbono. Acta Universitaria, 35, 1–17. https://doi.org/10.15174/au.2025.4382

Resumen

Modificando su estructura original, las características mecánicas de la madera pueden mejorarse. El objetivo de la investigación fue evaluar la resistencia al esfuerzo cortante de la madera sólida, laminada, densificada y reforzada con fibra de carbono. Para comparar los resultados de la madera modificada con los de la madera sólida, se prepararon seis configuraciones de probetas de Cryptomeria japonica y se determinaron su resistencia al corte y su retención. En comparación con la madera sólida sin tratamiento, la resistencia al esfuerzo cortante de la madera densificada aumenta 11%, la laminada 19% y la reforzada 1%. Por otro lado, el esfuerzo cortante de la madera laminada y densificada disminuye 16% y el de la madera densificada laminada y reforzada disminuye 23%. En el mismo sentido, la rigidez elástica aparente de la madera laminada, densificada y laminada reforzada se incrementa en relación con la de la madera sólida.

Citas

  1. Alamsyah, E. M., Suhaya, Y., Sutrisno, Hidayat, Y., Tanaka, T., & Yamada, M. (2021). Investigation of the adhesion performance of some fast-growing wood species based on their wettability. Open Agriculture, 6(1), 392-399. https://doi.org/10.1515/opag-2021-0013
  2. American Society for Testing and Materials (ASTM). (2021). ASTM D905-08(2021). D905 Standard test method for strength properties of adhesive bonds in shear by compression loading. ASTM International. https://doi.org/10.1520/D0905-08R21
  3. Aristri, M. A., Lubis, M. A. R., Yadav, S. M., Antov, P., Papadopoulos, A. N., Pizzi, A., Fatriasari, W., Ismayati, M., & Iswanto, A. H. (2021). Recent developments in lignin- and tannin-based non-isocyanate polyurethane resins for wood adhesives. a review. Applied Sciences, 11(9), 4242. https://doi.org/10.3390/app11094242
  4. Bernaczyk, A., Wagenführ, A., Terfloth, C., Lincke, J., Krystofiak, T., & Niemz, P. (2023). Investigations into the influence of temperature on the tensile shear strength of various adhesives. Materials, 16(18), 6173. https://doi.org/10.3390/ma16186173
  5. Cabral, J. P., Kafle, B., Subhani, M., Reiner, J., & Ashraf, M. (2022). Densification of timber: a review on the process, material properties, and application. Journal of Wood Science, 68(20). https://doi.org/10.1186/s10086-022-02028-3
  6. Feujofack, B. V., & Loss, C. (2023). Experimental campaign on the mechanical properties of Canadian small clear spruce-pine-fir wood: experimental procedures, data curation, and data description. Data in Brief, 48, 109064. https://doi.org/10.1016/j.dib.2023.109064
  7. Frihart, C. R. (2009). Adhesive groups and how they relate to the durability of bonded wood. Journal of Adhesion Science and Technology, 23(4), 601–617. https://doi.org/10.1163/156856108X379137
  8. Gašparík, M., Gaff, M., Ruman, D., Záborský, V., Kasickova, V., Sikora, A., & Štícha, V. (2017). Shear bond strength of two-layered hardwood strips bonded with polyvinyl acetate and polyurethane adhesives. BioResources, 12(1), 495-513. https://doi.org/10.15376/biores.12.1.495-513
  9. Gondaliya, A., Alipoormazandarani, N., Kleiman, M., & Foster, E. J. (2023). Sustainable compressed biocomposite: review on development and novel approaches. Materials Today Communications, 35, 105846. https://doi.org/10.1016/j.mtcomm.2023.105846
  10. Guo, D., Guo, N., Fu, F., Yang, S., Li, G., & Chu, F. (2022). Preparation and mechanical failure analysis of wood-epoxy polymer composites with excellent mechanical performances. Composites Part B: Engineering, 235, 109748. https://doi.org/10.1016/j.compositesb.2022.109748
  11. Hänsel, A., Sandak, J., Sandak, A., Mai, J., & Niemz, P. (2022). Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: a review. Wood Material Science & Engineering, 17(3), 230-241. https://doi.org/10.1080/17480272.2021.1925963
  12. International Organization for Standardization (ISO). (2012). ISO 3129:2012. Wood - Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens. International Organization for Standardization. https://www.iso.org/standard/52489.html
  13. International Organization for Standardization (ISO). (2014). ISO 13061-1:2014. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 1: Determination of moisture content for physical and mechanical tests. International Organization for Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60063
  14. International Organization for Standardization (ISO). (2017). ISO 13061-2:2014/Amd 1:2017. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests - Amendment 1. International Organization for Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60064
  15. Irle, M. (2019). A review of methods to increase the flexibility of wood. Bulletin of the Transilvania University of Braşov, Series II: Forestry, Wood Industry, Agricultural Food Engineering, 12(61), 53-62. https://doi.org/10.31926/but.fwiafe.2019.12.61.2.4
  16. Kawecki, B., & Sumorek, A. (2022). Study on profitability of combining wood and CFRP into composite based on mechanical performance of bent beams. Applied Sciences, 12(20), 10304. https://doi.org/10.3390/app122010304
  17. Meethaworn, B., Srivaro, S., & Khongtong, S. (2022). High-performance adhesive joint made from densified wood. Polymers, 14(3), 515. https://doi.org/10.3390/polym14030515
  18. Nkeuwa, W. N., Zhang, J., Semple, K. E., Chen, M., Xia, Y., & Dai, C. (2022). Bamboo-based composites: a review on fundamentals and processes of bamboo bonding. Composites Part B: Engineering, 235, 109776. https://doi.org/10.1016/j.compositesb.2022.109776
  19. Saad, K., & Lengyel, A. (2022). Strengthening timber structural members with CFRP and GFRP: a state-of-the-art review. Polymers, 14(12), 2381. https://doi.org/10.3390/polym14122381
  20. Schubert, M., Panzarasa, G., & Burgert, I. (2023). Sustainability in wood products: a new perspective for handling natural diversity. Chemical Reviews, 123(5), 1889-1924. https://doi.org/10.1021/acs.chemrev.2c00360
  21. Shirmohammadi, M., & Leggate, W. (2022). Review of existing methods for evaluating adhesive bonds in timber products. En M. Gong (ed.), Engineered Wood Products for Construction. IntechOpen. https://doi.org/10.5772/intechopen.92960
  22. Slabohm, M., Mai, C., & Militz, H. (2022). Bonding acetylated veneer for engineered wood products-a review. Materials, 15(10), 3665. https://doi.org/10.3390/ma15103665
  23. Sotomayor-Castellanos, J. R. (2017). Densificado higro-termo-mecánico de madera de Gyrocarpus americanus. Evaluación por ultrasonido. Revista de Investigaciones Agropecuarias, 43(2), 156-164. https://repositorio.inta.gob.ar/xmlui/bitstream/handle/20.500.12123/15004/RIA_2017_VOLUMEN43_N%c2%ba2_p.156-164.pdf?sequence=1&isAllowed=y
  24. Sotomayor-Castellanos, J. R., Hadachi, K., & Kudo, K. (2024). Indicadores de flexibilidad de madera laminada, densificada y reforzada con fibra de carbono. Ciencia Nicolaita, 90, 143-156. https://doi.org/10.35830/cn.vi90.782
  25. Steiger, R., Gehri, E., & Richter, K. (2010). Quality control of glulam: shear testing of bondlines. European Journal of Wood Products, 68, 243-256. https://doi.org/10.1007/s00107-010-0456-4
  26. Svoboda, T., Sikora, A., Záborský, V., & Gaffová, Z. (2019). Laminated veneer lumber with non-wood components and the effects of selected factors on its bendability. Forests, 10(6), 470. https://doi.org/10.3390/f10060470
  27. Vivian, M. A., Modes, K. S., Fogliatto, M. M., Schlichting, R. C., Corrêa, R., Grosskopf, É. J., & Dobner Júnior, M. (2023). Propriedades físicas, químicas e anatômicas da madeira de Cryptomeria japonica. Brazilian Journal of Forestry Research, 43, 1-10. https://doi.org/10.4336/2023.pfb.43e202002096