Resistencia al esfuerzo cortante de madera sólida, laminada, densificada y reforzada con fibra de carbono
Publicado 2025-09-10
Cómo citar
Derechos de autor 2025 Javier Ramón Sotomayor Castellanos, Koji Adachi, Firas Hawasly

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Resumen
Modificando su estructura original, las características mecánicas de la madera pueden mejorarse. El objetivo de la investigación fue evaluar la resistencia al esfuerzo cortante de la madera sólida, laminada, densificada y reforzada con fibra de carbono. Para comparar los resultados de la madera modificada con los de la madera sólida, se prepararon seis configuraciones de probetas de Cryptomeria japonica y se determinaron su resistencia al corte y su retención. En comparación con la madera sólida sin tratamiento, la resistencia al esfuerzo cortante de la madera densificada aumenta 11%, la laminada 19% y la reforzada 1%. Por otro lado, el esfuerzo cortante de la madera laminada y densificada disminuye 16% y el de la madera densificada laminada y reforzada disminuye 23%. En el mismo sentido, la rigidez elástica aparente de la madera laminada, densificada y laminada reforzada se incrementa en relación con la de la madera sólida.
Citas
- Alamsyah, E. M., Suhaya, Y., Sutrisno, Hidayat, Y., Tanaka, T., & Yamada, M. (2021). Investigation of the adhesion performance of some fast-growing wood species based on their wettability. Open Agriculture, 6(1), 392-399. https://doi.org/10.1515/opag-2021-0013
- American Society for Testing and Materials (ASTM). (2021). ASTM D905-08(2021). D905 Standard test method for strength properties of adhesive bonds in shear by compression loading. ASTM International. https://doi.org/10.1520/D0905-08R21
- Aristri, M. A., Lubis, M. A. R., Yadav, S. M., Antov, P., Papadopoulos, A. N., Pizzi, A., Fatriasari, W., Ismayati, M., & Iswanto, A. H. (2021). Recent developments in lignin- and tannin-based non-isocyanate polyurethane resins for wood adhesives. a review. Applied Sciences, 11(9), 4242. https://doi.org/10.3390/app11094242
- Bernaczyk, A., Wagenführ, A., Terfloth, C., Lincke, J., Krystofiak, T., & Niemz, P. (2023). Investigations into the influence of temperature on the tensile shear strength of various adhesives. Materials, 16(18), 6173. https://doi.org/10.3390/ma16186173
- Cabral, J. P., Kafle, B., Subhani, M., Reiner, J., & Ashraf, M. (2022). Densification of timber: a review on the process, material properties, and application. Journal of Wood Science, 68(20). https://doi.org/10.1186/s10086-022-02028-3
- Feujofack, B. V., & Loss, C. (2023). Experimental campaign on the mechanical properties of Canadian small clear spruce-pine-fir wood: experimental procedures, data curation, and data description. Data in Brief, 48, 109064. https://doi.org/10.1016/j.dib.2023.109064
- Frihart, C. R. (2009). Adhesive groups and how they relate to the durability of bonded wood. Journal of Adhesion Science and Technology, 23(4), 601–617. https://doi.org/10.1163/156856108X379137
- Gašparík, M., Gaff, M., Ruman, D., Záborský, V., Kasickova, V., Sikora, A., & Štícha, V. (2017). Shear bond strength of two-layered hardwood strips bonded with polyvinyl acetate and polyurethane adhesives. BioResources, 12(1), 495-513. https://doi.org/10.15376/biores.12.1.495-513
- Gondaliya, A., Alipoormazandarani, N., Kleiman, M., & Foster, E. J. (2023). Sustainable compressed biocomposite: review on development and novel approaches. Materials Today Communications, 35, 105846. https://doi.org/10.1016/j.mtcomm.2023.105846
- Guo, D., Guo, N., Fu, F., Yang, S., Li, G., & Chu, F. (2022). Preparation and mechanical failure analysis of wood-epoxy polymer composites with excellent mechanical performances. Composites Part B: Engineering, 235, 109748. https://doi.org/10.1016/j.compositesb.2022.109748
- Hänsel, A., Sandak, J., Sandak, A., Mai, J., & Niemz, P. (2022). Selected previous findings on the factors influencing the gluing quality of solid wood products in timber construction and possible developments: a review. Wood Material Science & Engineering, 17(3), 230-241. https://doi.org/10.1080/17480272.2021.1925963
- International Organization for Standardization (ISO). (2012). ISO 3129:2012. Wood - Sampling methods and general requirements for physical and mechanical testing of small clear wood specimens. International Organization for Standardization. https://www.iso.org/standard/52489.html
- International Organization for Standardization (ISO). (2014). ISO 13061-1:2014. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 1: Determination of moisture content for physical and mechanical tests. International Organization for Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60063
- International Organization for Standardization (ISO). (2017). ISO 13061-2:2014/Amd 1:2017. Physical and mechanical properties of wood - Test methods for small clear wood specimens - Part 2: Determination of density for physical and mechanical tests - Amendment 1. International Organization for Standardization. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60064
- Irle, M. (2019). A review of methods to increase the flexibility of wood. Bulletin of the Transilvania University of Braşov, Series II: Forestry, Wood Industry, Agricultural Food Engineering, 12(61), 53-62. https://doi.org/10.31926/but.fwiafe.2019.12.61.2.4
- Kawecki, B., & Sumorek, A. (2022). Study on profitability of combining wood and CFRP into composite based on mechanical performance of bent beams. Applied Sciences, 12(20), 10304. https://doi.org/10.3390/app122010304
- Meethaworn, B., Srivaro, S., & Khongtong, S. (2022). High-performance adhesive joint made from densified wood. Polymers, 14(3), 515. https://doi.org/10.3390/polym14030515
- Nkeuwa, W. N., Zhang, J., Semple, K. E., Chen, M., Xia, Y., & Dai, C. (2022). Bamboo-based composites: a review on fundamentals and processes of bamboo bonding. Composites Part B: Engineering, 235, 109776. https://doi.org/10.1016/j.compositesb.2022.109776
- Saad, K., & Lengyel, A. (2022). Strengthening timber structural members with CFRP and GFRP: a state-of-the-art review. Polymers, 14(12), 2381. https://doi.org/10.3390/polym14122381
- Schubert, M., Panzarasa, G., & Burgert, I. (2023). Sustainability in wood products: a new perspective for handling natural diversity. Chemical Reviews, 123(5), 1889-1924. https://doi.org/10.1021/acs.chemrev.2c00360
- Shirmohammadi, M., & Leggate, W. (2022). Review of existing methods for evaluating adhesive bonds in timber products. En M. Gong (ed.), Engineered Wood Products for Construction. IntechOpen. https://doi.org/10.5772/intechopen.92960
- Slabohm, M., Mai, C., & Militz, H. (2022). Bonding acetylated veneer for engineered wood products-a review. Materials, 15(10), 3665. https://doi.org/10.3390/ma15103665
- Sotomayor-Castellanos, J. R. (2017). Densificado higro-termo-mecánico de madera de Gyrocarpus americanus. Evaluación por ultrasonido. Revista de Investigaciones Agropecuarias, 43(2), 156-164. https://repositorio.inta.gob.ar/xmlui/bitstream/handle/20.500.12123/15004/RIA_2017_VOLUMEN43_N%c2%ba2_p.156-164.pdf?sequence=1&isAllowed=y
- Sotomayor-Castellanos, J. R., Hadachi, K., & Kudo, K. (2024). Indicadores de flexibilidad de madera laminada, densificada y reforzada con fibra de carbono. Ciencia Nicolaita, 90, 143-156. https://doi.org/10.35830/cn.vi90.782
- Steiger, R., Gehri, E., & Richter, K. (2010). Quality control of glulam: shear testing of bondlines. European Journal of Wood Products, 68, 243-256. https://doi.org/10.1007/s00107-010-0456-4
- Svoboda, T., Sikora, A., Záborský, V., & Gaffová, Z. (2019). Laminated veneer lumber with non-wood components and the effects of selected factors on its bendability. Forests, 10(6), 470. https://doi.org/10.3390/f10060470
- Vivian, M. A., Modes, K. S., Fogliatto, M. M., Schlichting, R. C., Corrêa, R., Grosskopf, É. J., & Dobner Júnior, M. (2023). Propriedades físicas, químicas e anatômicas da madeira de Cryptomeria japonica. Brazilian Journal of Forestry Research, 43, 1-10. https://doi.org/10.4336/2023.pfb.43e202002096