Vol. 25 No. 4 (2015)
Artículos de Investigación

Genetic variability of Mexican serviceberry (Malacomeles denticulata [Kunth] Jones) obtained by inter simple sequence repeated or intermicrosatellites (ISSR) markers

Daniela González-Cerritos
Universidad Politécnica de Guanajuato
Bio
Carlos Alberto Núñez-Colín
Programa de Ingeniería en Biotecnología, Universidad de Guanajuato. Mutualismo #303 Esq. Prolongación Rio Lerma, Colonia La Suiza, Apartado Postal 91, Celaya, Guanajuato, 38060, México.
Bio
Emiliano Villordo-Pineda
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)
Gabriela Medina-Ramos
Universidad Politécnica de Guanajuato
Bio
Mario Martín González-Chavira
Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)

Published 2015-09-04

Keywords

  • Rosaceae,
  • marcadores de ADN,
  • frutales nativos,
  • recursos fitogenéticos.
  • Rosaceae,
  • DNA markers,
  • native fruits,
  • plant genetic resources.

How to Cite

González-Cerritos, D., Núñez-Colín, C. A., Villordo-Pineda, E., Medina-Ramos, G., & González-Chavira, M. M. (2015). Genetic variability of Mexican serviceberry (Malacomeles denticulata [Kunth] Jones) obtained by inter simple sequence repeated or intermicrosatellites (ISSR) markers. Acta Universitaria, 25(4), 26–34. https://doi.org/10.15174/au.2015.773

Abstract

Malacomeles denticulata is a native fruit of Mexico that recently had been reported functional proprieties to be proposed as a fruit option. This research aims to elucidate the variability of twelve populations of M. denticulata by Inter Simple Sequence Repeated or Inter-microsatellites (ISSR) markers. All ISSR showed high values of Polymorphic Information Content (PIC) and Nei’s Index of Population Differentiation (GST) as well as high percentage of polymorphism. Three groups of variability were conformed, where seven populations of Guanajuato and the population of El Tepozán, Querétaro conformed the first group; while the populations of Agua Zarca (Guanajuato), La Joya (Querétaro), and Santa Catarina del Monte (México) conformed the other group. Finally, the population of San Miguel Tlaixpan (México) was separated as outlier group. According to Analysis of Molecular Variance (Amova), the within population variability was 47% and among population variability was 53% of total variability, that agree on the variability of seed traits but disagree on the variability of SSR markers.


References

  1. Campbell, C. S., Evans, R. C., Morgan, D. R., Dickinson, T. A., & Arsenault, M. P. (2007). Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): Limited resolution of a complex evolutionary history. Plant Systematic and Evolution, 266(1-2), 119-145. doi: 10.1007/s00606-007-0545-y


  2. Cázares-Franco, M. C., Ramírez-Chimal, C., Herrera-Hernández, M. G., Núñez-Colín, C. A., Hernández-Martínez, M. A., & Guzmán-Maldonado, S. H. (2014). Physicochemical, nutritional and health-related component characterization of the underutilized Mexican serviceberry fruit (Malacomeles denticulata [Kunth] G. N. Jones). Fruits, 69(1), 47-60. doi: 10.1051/fruits/2013100


  3. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.


  4. González, A., & Aguirre, X. (2007). Inter Simple Sequence Repeats (ISSRs). En L. E. Eguiarte, V. Souza & X. Aguirre (Comp.), Ecología molecular (pp. 567-571). Ciudad de México: Instituto Nacional de Ecología (Semarnat) y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (Conabio).


  5. Hernández-Martínez, M. A., Espinosa-Trujillo, E., & Núñez-Colín, C. A. (2010). Perspectivas del membrillo cimarrón (Amelanchier denticulata[Kunth] Koch) como un frutal alternativo para el centro de México. Journal of the Interamerican Society for Tropical Horticulture, 54, 49-53.


  6. Hernández-Martínez, M. A., Núñez-Colín, C. A., Guzmán-Maldonado, S. H., Espinosa-Trujillo, E., & Herrera-Hernández, M. G. (2011). Variabilidad morfológica mediante caracteres de semilla de poblaciones de Amelanchier denticulata (Kunth) Koch, originarias de Guanajuato, México. Revista Chapingo Serie Horticultura, 17(3), 161-172. doi: 10.5154/r.rchsh.2011.17.027


  7. Herrera-Hernández, M. G., Núñez-Colín, C. A., Guzmán-Maldonado, S. H., & Hernández-Martínez, M. Á. (2013). Contenido de algunos compuestos antioxidantes en tres estados de madurez y dos localidades en frutos de membrillo cimarrón (Malacomeles denticulata). Revista Chapingo Serie Horticultura, 19(4), 45-57. doi: 10.5154/r.rchsh.2012.02.022


  8. Laurentin, H., & Karlovsky, P. (2007). AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: identification, genetic relationship and comparison of AFLP informativeness parameters.Genetic Resources and Crop Evolution, 54(7), 1437-1446. doi: 10.1007/s10722-006-9128-y


  9. Lo, E. Y. Y., Stefanović, S., & Dickinson, T. A. (2007). Molecular Reappraisal of Relationships Between Crataegus and Mespilus (Rosaceae, Pyreae)—Two Genera or One? Systematic Botany, 32(3), 596-616. doi: 10.1600/036364407782250562


  10. Luna-Páez, A., Valadez-Moctezuma, E., Barrientos-Priego, A. F., & Gallegos-Vázquez, C. (2007). Caracterización de Opuntiaspp. mediante semilla con marcadores RAPD e ISSR y su posible uso para diferenciación. Journal of the Professional Association for Cactus Development, 9, 43-59.


  11. Marotti, I., Bonetti, A., Minelli, M., Catizone, P. & Dinelli, G. (2007). Characterization of some Italian common bean (Phaseolus vulgaris L.) landraces by RAPD, semi-random and ISSR molecular markers. Genetic Resources and Crop Evolution, 54(1), 175-188. doi: 10.1007/s10722-005-3133-4


  12. Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106(949), 283-292.


  13. Núñez-Colín, C. A. (2010). Distribución y caracterización eco-climática del membrillo cimarrón (Amelanchier denticulata [Kunth Koch]) en México. Revista Chapingo Serie Horticultura, 16(3), 195-206. doi: 10.5154/r.rchsh.2010.16.025.


  14. Núñez-Colín, C. A., & Hernández-Martínez, M. Á. (2011). The Mexican Serviceberry (Amelanchier denticulata): a New Potential Berry Fruit Crop from Semi-Arid Areas. Acta Horticulturae, 918, 917-924.


  15. Nybom, H., & Weising, K. (2010). DNA-based identification of clonally propagated cultivars. Plant Breeding Reviews, 34, 221-295. doi: 10.1002/9780470880579.ch6


  16. Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28(19), 2537-2539. doi: 10.1093/bioinformatics/bts460


  17. Roldán-Ruiz, I., Dendauw, J., van Bockstaele, E., Depicker, A., & De Loose, M. (2000). AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding, 6(2), 125-134. doi: 10.1023/A:1009680614564


  18. Stushnoff, C. (1991). Amelanchier species. Acta Horticulturae, 290, 549-566.


  19. Torres-Hernández, S., Pérez-Rodríguez, F., Serrano-Jamaica, L. M., Villordo-Pineda, E., Hernández-Martínez, M. Á., González-Chavira, M. M., & Núñez-Colín, C. A. (2013). Genetic variability in Malacomeles denticulata (Rosaceae) from central Mexico revealed with SSR markers. Genetic Resources and Crop Evolution, 60(7), 2191-2200. doi: 10.1007/s10722-013-0041-x


  20. Turner, B. L. (2011). Recension of the genus Malacomeles (Rosaceae). Phytologia, 93(1), 99-106.


  21. Vijayan, K. (2004). Genetic relationships of Japanese and Indian mulberry (Morus spp.) genotypes revealed by DNA fingerprinting. Plant Systematics and Evolution, 243(3-4), 221-232. doi: 10.1007/s00606-003-0078-y


  22. Weising, K., Nybom, H., Wolff, K., & Kahl, G. (2005). DNA fingerprinting in plants: principles, methods, and applications. Boca Raton: CRC Press.


  23. Yeh, F. C., Yang, R., & Boyle, T. (1999). POPGENE version 1.31, Microsoft Window-based Freeware for Population Genetic Analysis, Quick User Guide. Edmonton: University of Alberta and Centre for International Forestry Research.


  24. Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994). Genome fingerprinting by simple sequence repeats (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176-183.